A Developer

E FIT Protocol

Flexible and Interoperable Data Transfer (FIT)
Protocol

Introduction

The Flexible and Interoperable Data Transfer (FIT) protocol is a format designed
specifically for the storing and sharing of data that originates from sport, fithess and
health devices. It is specifically designed to be compact, interoperable and extensible.
This section describes the FIT file structure and interpretation.

The FIT protocol defines a set of data storage templates (FIT messages) that can be
used to store information such as user profiles and activity data in files. Any FIT-
compliant device can interpret a FIT file from any other FIT-compliant device. A software
development kit (SDK) is available for download to generate code and libraries specific
to a product’s requirements. The SDK enables efficient use of a binary format at the
embedded level, to significantly reduce the development effort and allow for rapid
product development.

The following example use case illustrates one way that the FIT protocol is used to
transfer activity data acquired during exercise to a fitness platform. (Figure 1):
1. ANT+ Sensors measure parameters such as heart rate and running speed
2. Data is broadcast in real time, using interoperable ANT+ data formats

3. Session events and real time activity data is collected and saved into a FIT file on
a display device

4. The FIT file is transferred from the device using Bluetooth, WiFi, or ANT-FS

The FIT data may be used directly on the PC or transferred to internet applications



ANT + BLUETOOTH
BLUETDOTH WIFI

At "
o

ANT-FS
o

)

- = - ™) - ~
| SENSORS | | DISPLAY DEVICE ] | FITHNESS PLATFORMS |
L A L i L e

Figure 1. Data flow between devices using FIT protocol,
After the initial wireless sensor data is collected, the FIT protocol provides a consistent

format allowing all devices in the subsequent chain to share and use the data.
The FIT file protocol was designed to provide:

« Interoperability of device data across various device platforms
« Scalability from small embedded targets to large web databases

« Forward compatibility, allowing the protocol to grow and retain existing
functionality

« Automated compatibility across platforms of different native endianness

The FIT file protocol consists of:

« A file structure
« A global list of FIT messages and FIT, fields together with their defined data types

« Software Development Kit (SDK) to configure target products and generate the
necessary FIT code and libraries

Overview of the FIT File Protocol

A FIT file contains a series of records that, in turn, contain a header and content. The
record content is either a definition message that is used to specify upcoming data, or a
data message that contains a series of data-filled fields (Figure 2). The FIT protocol
defines the type and content of messages, the data format of each message’s field, and
methods of compressing data (if applicable).



Record m : header Definition Message

Field 1 Field 2 Field 3  Field 4 Field 5
Record 77: header | Data Data Data Data Data
Field 1 Field 2 Field 3
Record o header Data Data Data

Figure 2. Basic FIT File components.

FIT Profiles

There are two types of FIT profiles: global and product. All available FIT messages are
outlined in the Global FIT Profile. This is then broken down into smaller subset, Product
Profiles, outlining product-specific FIT messages (Figure 3).

Global Profile
Available System
Configurations
Product_1 Profile Product_2 Profile
ALL defined
FIT Messages Product Configuration Product Conflguration
FIT Messages FIT Messages
(used in product_1) {used in product_2)
FIT Message Felds FIT Message Fields S
ALL defined {used in product_1) {used in product_2)
FIT Message Fields
base & FIT Data Types base & FIT Data Types
(used in product_1}) {used in product_2)
ALL defined
base & FIT Data Types

Figure 3. Components of Global and Product FIT Profiles.
Each profile consists of system configuration information, defined FIT messages and

fields, base data types, and FIT data types (Figure 3).

Global Profile

The Global FIT Profile is maintained by Garmin International, Inc. and consists of the
complete collection of available system configurations, FIT messages, fields, and data
types as described below:

« System Configurations: these describe system parameters such as byte
endianness and alignment. The FIT protocol supports multiple system
configurations

» FIT Messages: these define the FIT fields contained within each FIT message



« FIT Message Fields: these define the base type and format of data within each
FIT field

« FIT Types: these describe the FIT field as a specific type of FIT variable
(unsigned char, signed short, etc)

New configurations, messages, and data types may be added as new versions of the
SDK are released. Users should not modify existing definitions found in the global
profile. Additions may be requested by contacting Garmin International, Inc. at
www.thisisant.com.

The relationships between FIT messages, fields, and base types are illustrated in Figure
4.

FIT message: Field 1 Field 2 Field 3 Field 4
e.g. record e.q. speed e.q distance e.q. time e.q. cadence
FIT Field: Time field data format/base type
e.g. time e.g. date_time

.
- -
- e
- ‘-‘
- -
- ey

Base Type: date._time: uint32 representing seconds since UTC
e.g date_time 00:00 Dec 31 1989

Figure 4. FIT message, field, and base type structure.

Product Profile

Not all messages defined in the global FIT profile will be relevant to a particular
application. A Product Profile is an application specific subset of the Global Profile that
defines only the necessary data messages in the configuration of the product’s
architecture (Figure 3). An SDK is available to allow the developer to select the desired
system configuration and relevant data messages and then generate application specific
FIT code.

Custom messages may be defined in the manufacturer specific message range
(0OxFFOO-0OxFFFE). Information contained in manufacturer specific messages will
generally not be interoperable, since other applications will not have knowledge of them.

Two different FIT devices may use different product profiles or versions of the complete
Global Profile. This may result in one device receiving a FIT message that it does not
recognize. When this occurs, the FIT file is maintained in its entirety and any
unrecognized messages are simply ignored by the decoder without interrupting the
operation of the receiving device, or causing any errors. Similarly, if a device does not
receive data that it may expect, it will simply fill those fields with an invalid value rather
than creating errors. In this way, the FIT protocol will ensure compatibility across devices



that may not have the exact same profiles implemented. These compatibility processes
are discussed in more detail in later sections.

FIT File Protocol

The FIT protocol defines the process for which profiles are implemented and files are
transferred. Figure 5 provides an overview of the FIT process. Typically, ANT+
broadcast data is collected by a display device. The display device would then encode
the data into the FIT file format according to its product profile (i.e. product profile 1).
The FIT file is then transferred to another device which would then decode the received
files according to its own implemented product profile (i.e. product profile 2).

Incoming Data: peremesmacsasnsndm +=+ Filg == Other FIT Devices

FIT File

Trarsfer
Lettings, events, 1
senzor data i
]
) i }
L]
Product Profiles i Product Profiles
FIT Encode H FIT Decode
Dvice specific i - Diervice spicilic
FIT mes Compress data i - Resolve Endianness FIT messages
ges 1 File - Reconstruct Timestamps
l Trangber = Fill all message fields
. - Unknown data ignoned
FIT File L - Missing data fields set to
i “Irvalid”™ values
| Header | :
| FIT Version, Size 1 H {
B et e o e g2 )
]
I i .
Bl case s
: Data Becords | Structure or Object
| 1
| [FIT Messages) : ‘
: i
F__GRCIs. Application
Encoding Device Decoding Device

Figure 5. Overview of the FIT File protocol.
Incoming data such as settings, events and sensor data are written into FIT message

fields according to the formats defined by the device's product profiles. The FIT
encoding process is optimized, such that only valid fields are written to the file. The file
can then be transferred to another FIT device. When the data is used by the receiving
device, it is decoded according to its implemented product profiles, which relate the
received FIT messages to the global FIT message list. The decoded values will then be
passed as structures or objects to the application.

The SDK code will resolve native endianness, reconstruct timestamp information and fill
all message fields appropriately. If there is a difference in profile version between the
two devices, any missing data will be set to invalid or default values as defined in the
FIT protocol, and any unknown messages or data will be ignored. The FIT file is
maintained in its original form for transfer to other devices, if desired.

FIT File Structure



All FIT files have the same structure which consists of a File Header, a main Data
Records section that contains the encoded FIT messages, followed by a 2 byte CRC
(Figure 6.a).

FIT il Record Header Recard Content
- (1 byte) {varying size)

________ 4 d
: Header | A ~ s =
\ (12 bytes) e —
e ————— -+ s Definition Messaga
| DataRecords | !
I

. I
|- Definition Messages Mormal
:- Data Messages : Header P O
: {warying kength) :

Time Offset
________ 4+ Data Message
| CRC i xcsarnee Header
\ (2 bytes) | =
(@ (b}

Figure 6. (a) The FIT file structure (b) Data Record types.

File Header

The file header provides information about the FIT File. The minimum size of the file
header is 12 bytes including protocol and profile version numbers, the amount of data
contained in the file and data type signature. The 12 byte header is considered legacy,
using the 14 byte header is preferred. The header size should always be decoded
before attempting to interpret a FIT file, Garmin International, Inc. may extend the
header as necessary. Computing the CRC is optional when using a 14 byte file header,
it is permissible to set it to 0x0000. Including the CRC in the file header allows the CRC
of the file to be computed as the file is being written when the amount of data to be
contained in the file is not known. Table 1 outlines the FIT file header format.

Table 1. Byte Description of File Header

Byte Parameter Size (Bytes) Description

0 Header Size 1 Indicates the length
of this file header
including header size.
Minimum size is 12.
This may be
increased in future to
add additional
optional information

1 Protocol Version 1 Protocol version
number as provided
in SDK.



Byte

10

12

13

CRC

Parameter

Profile Version LSB

Profile Version MSB

Data Size LSB

Data Size
Data Size
Data Size MSB

Data Type Byte[0]

Data Type Byte[1]
Data Type Byte[2]
Data Type Byte[3]

CRC LSB

CRC MSB

Size (Bytes)

2

Description

Profile version
number as provided
in SDK

Length of the Data
Records section in
bytesDoes not
include Header or
CRC

ASCII values for
“.FIT". A FIT binary
file opened with a text
editor will contain a
readable “.FIT" in the
first line.

Contains the value of
the CRC (see CRC)
of Bytes 0 through 11,
or may be set to
0x0000. This field is
optional.

The final 2 bytes of a FIT file contain a 16 bit CRC in little endian format. The CRC is

computed as follows:



FIT_UINT16 FitCRC_Getl16(FIT_UINT16 crc, FIT_UINTS byte)

F|
L

static const FIT_UINT16 crc_table[16] =

B, OxFOE1, ©x3C00, O
90, Bx9Ce1,

FIT_UINT16 tmp,

f// compute checksum of lower four bits of byte
tmp = crc_table[crc & OxF];

crc = (crc >> 4) & OXOFFF;

crc = crc A tmp N cre_table[byte & OxF];

// now compute checksum of upper four bits of byte
tmp = crc_table[erec & 0xF];

crc = (crc >> 4) & Ox6FFF;

crec A tmp M crc_table[(byte == 4) & BxF];

return crc;

Data Records

The data records in the FIT file are the main content and purpose of the FIT protocol.
There are two kinds of data records:

Definition Messages: these define the upcoming data messages. A definition message
will define a local message type and associate it to a specific FIT message, and then
designate the byte alignment and field contents of the upcoming data message.

Data Messages: these contain a local message type and populated data fields in the
format described by the preceding definition message. The definition message and its
associated data messages will have matching local message types. There are two types
of data message:

« Normal Data Message

« Compressed Timestamp Data Message

These messages will be further explained in the Record Format section. All records
contain a 1 byte Record Header that indicates whether the Record Content is a
definition message, a normal data message or a compressed timestamp data message
(Figure 6.b). The lengths of the records vary in size depending on the humber and size
of fields within them.

All data messages are handled locally, and the definition messages are used to
associate local data message types to the global FIT message profile. For example, a



definition message may specify that data messages of local message type 0 are Global
FIT ‘lap’ messages (Figure 7). The definition message also specifies which of the ‘lap’
fields are included in the data messages (start_time, start_position_lat,
start_position_long, end_position_lat, end_position_long), and the format of the data in
those fields. As a result, data messages can be optimized to contain only data, and the
local message type is referenced in the header. Data messages are referenced to local
message type.

Global FIT Profile

FIT File
]
L]
FIT . Definintion Message
rnsg“xﬂ‘ Local Msg O assigned to:
lap ) Global FIT message “lap”
message_index 253 start_time, start_position_lat,
Jz(timestarnp a start_position_bong, end_pasition_lat
el event 1 ______,_.-r'"' H
54 start_time k3 ¥
FIT 7 start_position_lat 4 |
fields | start_position_long 5 Local Msg 0 Data Message
i end_position_lat 6 start_time, start_position_lat,
end_position_long 7 start_position_kong, end_pasition_lat

Figure 7. Definition message assigns Global FIT message to local message 0.

Chained FIT files

The FIT protocol allows for multiple FIT files to be chained together in a single FIT file.
Each FIT file in the chain must be a properly formatted FIT file (header, data records,
CRC).

FIT File FIT File
et 7 0 i o b 1
I Header | Header |
I (14 trytes) I I (14 bytes) |
R e - e ————— -
| Data Records : | Data Records :
1 |

| |
1- Definition Messages |- Definftion Messages
I- Data Messaes : L . ® |- Data Messanes :
| |

- | : |
: [warying length) I : {varying length) I

________________ _|
i CRE | : cRE |
I (2 bytes) I | {2 bytes) I

- i s " - s e, il

Figure 8. Chained FIT Files.

Record Format

A FIT record consists of two parts: a Record Header and the Record Content. The
record header indicates whether the record content contains a definition message, a
normal data message or a compressed timestamp data message. The record header
also has a Local Message Type field that references the local message in the data
record to its global FIT message.



Record Header Byte

The Record Header is a one byte bit field. There are actually two types of record
headers: normal header and compressed timestamp header. The header type is
indicated in the most significant bit (msb) of the record header. The normal header
identifies whether the record is a definition or data message, and identifies the local
message type. A compressed timestamp header is a special compressed header that
may also be used with some local data messages to allow a compressed time format.

Normal Header

A value of 0 in Bit 7 of the record header indicates that this is a Normal Header. The bit
field description for a normal header is shown below in Table 2.

Table 2. Normal Header Bit Field Description

Bit Value Description
7 0 Normal Header
6 Dorl Message Type

1: Definition Message
0: Data Message

5 0 (default) Message Type Specific
4 0 Reserved
0-3 0-15 Local Message Type
Message Type

The message type indicates whether the record contains a definition or data message.

Message Type Specific
The value in bit 5 of a normal header changes based on if we are writing a Definition or
Data Message

Definition
If the bit is set the message contains extended definitions for developer data. The details
of developer data are highlighted in 4.2.1.5.

Data
Reserved in data messages and should be set to 0.

Data Message Header



Local Message Type
The Local Message Type Is used to create an association between the definition
message, data message and the FIT message in the Global FIT Profile.

Definition Message : In a definition message, the local message type Is assigned to a
Global FIT Message Number (mesg_num) relating the local messages to their
respective FIT messages

Data Message : The local message type associates a data message to its respective
definition message, and hence, its' global FIT message. A data message will follow the
format as specified in its definition message of matching local message type.

Local Message Types can be redefined within a single FIT file, please refer to
Redefining Local Message Types for best practices when using a single local message
type for different records.

Example:

Figure 9 shows an example of using data records with normal headers to designate
definition and respective data messages for recording FIT ‘record’ and ‘lap’ messages.

Morrral Header
17 l_ Resarue BiL
: Local Meg Tvpe 0 = FIT message "Record”

Reccrd [ 0/1(0/0(0 0 0 0| DefinitionMessage: i irchrice = Time. oo Distos |

Dﬁil'ltlm"'hm—* ‘ L Local Message Type

Deneloper Claa Aag ——

T Local Type O Record”
Record 2; |1:| 000000 'Dl Data Message: Time hmgpeed\mggé-ceﬁem Dm,l |

D.a'[al'"ESageJ LLc-:eII‘*'le-ssageTwe

Ll )L
Record 3: [D 000000 0| DataMessage: %ﬁ%&gﬁggﬁmmm

; [ al | Definition Message  Local Msg Type 1 =FIT message "Lap™
i |“ 1111010 0 01| rnsisloper Data: _ Flelds Incuded = Speed, Distarce, Developer Dats Fieids

: | i Local Mg Type 11 Lap™)
RecrdS: (010101010 0 0 1| DataMessage: S B

T I y -
Record: [ 0/0(0[0/0 0 0 0| Datamessage:  TrTi B I N e |
Recard 7; |n 000000 1| Data Message: ﬁ'dhatmwe}:gbm
b ] L ——_
~y~ ———
Record Header Record Conlent
{1 byte) (varying size)

Figure 9. Normal Headers: example definition and data messages.

Compressed Timestamp Header

The compressed timestamp header is a special form of record header that allows some
timestamp information to be placed within the record header, rather than within the
record content. In applicable use cases, this allows data to be recorded without the need
of a 4 byte timestamp in every data record. The bit field description of a compressed
timestamp header is shown in Table 3 below.



Table 3. Compressed Timestamp Header Bit Field Description

Bit Value Description
7 1 Compressed Timestamp
Header
5-6 0-3 Local Message Type
0-4 0-31 Time Offset (seconds)

Note this type of record header is used for a data message only.

Local Message Type

In order to compress the header, only 2 bits are allocated for the local message type. As
a result, the use of this special header is restricted to local message types 0-3, and
cannot be used for local message types 4-15. The local message type can be redefined
within a single FIT file, please refer to Redefining Local Message Types for more details.

Time Offset

The five least significant bits (Isb) of the header represent the compressed timestamp, in
seconds, from a fixed time reference. The time resolution is not configurable. The fixed
time reference Is provided in the form of any FIT message containing a full, four byte
timestamp recorded prior to the use of the compressed timestamp header (see
example). The 5-bit time offset rolls over every 32 seconds; hence, it Is necessary that
any two consecutive compressed timestamp records be measured less than 32 seconds
apart.

The actual timestamp value is determined by concatenating the most significant 27 bits
of the previous timestamp value and the 5 bit value of the time offset field. Rollover must
be taken into account such that:

If Time Offset >= (Previous Timestamp)&0x0000001F (i.e. offset value is greater than
least significant 5 bits of previous timestamp):

Timestamp = (Previous timestamp) & OxFFFFFFEO + Time Offset

If Time Offset < (Previous Timestamp) & 0x0000001F (i.e. offset is less than least
significant 5 bits of previous timestamp):

Timestamp = (Previous timestamp) & OxFFFFFFEO + Time Offset + 0x20

The addition of 0x20 accounts for the rollover event



Refer to Figure 10 for an example of using compressed timestamp headers. In this
example, local message type 0 is used to define a message containing a both a
timestamp field and multiple data fields (Record 1). Local message type 1 defines a
message containing only data fields (Record 2).

Record 3 is a data message which includes a timestamp value of OxXXXXXXX3B. For the
purpose of this example, the values of the upper 3 bytes do not change and are set as
0xXX ‘don't care’ values.

Record 4 is a data message using a compressed timestamp header. As the Time Offset
value is the same as the 5 least significant bits of the previous timestamp, the calculated
timestamp for record 4 is OxXXXXXX3B.

Record 5 is another data message using a compressed timestamp header. The Time
Offset value is greater than the 5 least significant bits of the previous timestamp by 2
seconds, so the calculated timestamp for record 5 becomes OxXXXXXX3D.

Record 6 Time Offset value is 00010, which is smaller than the 5 least significant bits of
the previous timestamp (5 Isb of OxXXXXXX3D is 11101), indicating a rollover event has
occurred. Therefore, the timestamp becomes OxXXXXXX42.

Similarly, record 7 shows an increase in time of 3 seconds and the timestamp becomes
OxXXXXXX45, and record 8 shows a rollover event resulting in a timestamp of
DX XXX XX61.

Finally, if a new data message containing a timestamp is recorded (i.e. record 9), then
this becomes the new time reference for any subsequent compressed timestamp data
records, such as records 10 and 11.



Hormal Header
Dﬂ"rtlm Mizssage
Local Message Type

Record 1: |n|_1::u:-nnn|nm-mmp ]ﬁeﬁdi[neh:lzIEu...]

Record 2: [ﬂlgﬂ-ﬂﬂ-ﬂﬂllﬁelﬂi|ﬁdﬂ2]Ek... |

— Mormal Header
Data Message
Local Massage T
+ r r “aage Type
Record 3: |Diﬂﬂﬂﬁﬁﬂﬂ|ﬂmIHB |F|ﬂ:ll[F|ele|Etc... |
—Compressed Timestamp Header
Local Message Type
Time Cifsat
L ]
H : timestamp
Record 4: |:I.|¢I 1,11011IF-=H1|F-6|:IZIEM... | DO00MGE
. [ I l | | | Resultant timestamp
Record 5: |1|0111101 Feld 1 | Feld2 | Etc.. DIOD0UKNED
e | T Resultant timestamp
Record &: |:I.|GI 1.0ﬂﬂ-10|ﬁ!lﬂ1|ﬁ&d2]El‘£... | Ox000KE 2
; Resultant timestamp
Record 7: |1uluﬂlﬂ1|ﬁﬁd1|ﬁm2|ﬂc“. | DO0000MAS
. Resultant timestamp
Record 8: |lﬂlﬂﬂ¢01|ﬁdd1|ﬁeﬂ2|&c... | o
Marmal Header
Data Message
r Local Message Type
Record 9: 'nnnn.nnnn|mxmxuIFIeIﬂL‘szlEtc |
mpressed Timestamg Header
anndmgch
TImEﬁFSE‘t
Resultant timestamp
Record 10: 101|1¢01D|Feu1|md2|m,._ | 0000002
) | | . Resultant timestamp
Record 11: ilﬂllﬂuﬂﬂl[FeullﬁddzlEﬁ... | ODONNEL
LY A, -
b i e sl
Record Header Record Content
(1 byte) (varying size)

Figure 10. Compressed Timestamp Header Example.

Record Content

The record content contains one of two messages:

« Definition Message: this describes the architecture, format, and fields of
upcoming data messages

Data Message: this contains data that is formatted according to a preceding
definition message

Definition and data messages are associated through the local message type. A data
message must always be specified by a definition message before it can be used in a
FIT file. If a data message is sent without first being defined, it will cause a decode error
and the data will not be interpreted. Definition messages are used by the conversion



tools to interpret subsequent data messages contained in a FIT file. For more details
see Best Practices

Definition Message

The definition message is used to create an association between the local message
type contained in the record header, and a Global Message Number (mesg_num) that
relates to the global FIT message.

Record Confent
S ——"""‘""—— —
Fanll Ty
Record Reserved  |Architecture | Global Message Number | # of Figlds FIELD DEFINITIONS
Header {1byte) | (1 byte) {2 bytes) (1 byte) (3 bytes/field)

- Fiwed Content: 5 Bytes - Variabhe Content —

-

Figure 11. Definition Message Structure.

Rl Cowrn!
o Remerved | Architacture il Hessage Humisr i ol Redds Fukl Cmimtons = “-E':‘f“’ r Fiskd Defritnes
Heager {1 byte] (L ytel (2 bytes] {2 byt (F bytes Tiekd) (1 bat) (7 byeesifieid)

P Cormart % Bevken AL T

Figure 12. Definition Message with Developer Data Sfructure.

Definition messages are extended to include additional Developer Field Definitions if the
Developer Data flag is set in the record header.

The record contents of a definition message are outlined in Table 4 below.

Table 4. Definition Message Contents

Byte Description Length Value
0 Reserved 1 Byte 0
1 Architecture 1 Byte Architecture Type

0: Definition and Data
Messages are Little
Endian

1: Definition and Data
Message are Big

Endian
2-3 Global Message 2 Bytes 0:65535 — Unique to
Number each message

*Endianness of this 2
Byte value is defined
in the Architecture
byte

4 Fields 1 Byte Number of fields in
the Data Message



Byte Description Length Value

5-4+Fields* 3 Field Definition 3 Bytes (per Field) See Field Definition
Contents (Table 5)

5+ Fields * 3 # Developer Fields 1 Byte Number of Self
Descriptive fields in
the Data
Message(Only if
Developer Data Flag

is set)
6 + Fields * 3 - END Developer Field 3 bytes (per Field) See Developer Data
Definition Field Definition

Contents (Table 8)

Architecture Type
The Architecture Type describes whether the system architecture is big or little endian.
All data in the related definition and upcoming data message will follow this format.

Global Message Number

The Global Message Number relates to the Global FIT Message. For example, the
Global FIT Message ‘Record’ has the global message number ‘20°. All Global Message
Numbers are found in the mesg_num base type defined in the SDK.

Fields

Fields defines the number of FIT fields that will be included in the data message. For
example, If a given FIT message had 10 defined FIT fields, the application may only
choose to send 4 of those FIT fields in the data message. In this case, the Fields byte
would be set to ‘4". All FIT messages and their respective fields are listed in the global
FIT profile.

Field Definition

The Field Definition bytes are used to specify which FIT fields of the global FIT message
are to be included in the upcoming data message In this instance. Any subseqguent data
messages of a particular local message type are considered to be using the format
described by the definition message of matching local message type. All FIT messages
and their respective FIT fields are listed in the global FIT profile. Each Field Definition
consists of 3 bytes as detailed in Table 5. Refer to Figure 14 for an example definition
message.

Table 5. Field Definition Contents

Byte Name Description



Byte Name Description

0 Field Definition Number Defined in the Global FIT
profile for the specified FIT
message

1 Size Size (in bytes) of the specified

FIT message’s field

2 Base Type Base type of the specified FIT
message’s field

Field Definition Number

The Field Definition Number uniquely identifies a specific FIT field of the given FIT
message. The field definition numbers for each global FIT message are provided in the
SDK. 255 represents an invalid field number.

Size

The Size indicates the size of the defined field in bytes. The size may be a multiple of
the underlying FIT Base Type size indicating the field contains multiple elements
represented as an array.

Base Type

Base Type describes the FIT field as a specific type of FIT variable (unsigned char,
signed short, etc). This allows the FIT decoder to appropriately handle invalid or
unknown data of this type. The format of the base type bit field is shown below in Table
6. All available Base Types are fully defined in the fit.h file included in the SDK.

Table 6. Definition Message Contents

Bit Name Description

7 Endian Ability 0 - for single byte data
1 - if base type has
endianness (i.e. base type is
2 or more bytes)

56 Reserved Reserved

04 Base Type Number Number assigned to Base
Type (provided in SDK)

When the decoder encounters unknown or invalid data, it will assign an invalid value
according to the designated base type. Base type numbers (bits 0:4) and their invalid



values can also be found in the fit.h file provided in the SDK and as listed in Table 7

below.

Table 7. FIT Base Types and Invalid Values

Base
Type #

10

12

Endian
Ability

0x00

0x01

O0x02

0x83

0x84

0x85

OxB6

Ox07

0x88

0x89

Ox0A

0x8B

Ox8C

enum

5int8

uint8

sint16

uintlé

sint32

uint32

string

float32
float64
uint8z

uintl6z

uint32z

Invalid Value

OxFF

O0x7F

OxFF

Ox7FFF

OXFFFF

OX7FFFFFFF

OxFFFFFFFF

0x00

OXFFFFFFFF

OXFFFFFFFFFFFFFFFF

0x00

0x0000

0x00000000

Comment

2's
complement
format

2's
complement
format

2’s
complement
format

Null
terminated
string
encoded in
UTF-8
format



Base Endian Invalid Value Comment
Type # Ability

13 0 0x0D byte OxFF 1 Array of
bytes. Field
is invalid if
all bytes are
invalid.

14 1 0x8E sint64 0x7FFFFFFFFFFFFFFF 8 2's
complement
format

15 1 Ox8F uint64 OxFFFFFFFFFFFFFFFF 8

16 1 0x90 uint64z 0x0000000000000000 B

Developer Data Field Description

Developer data fields allow for files to define the meaning of data without requiring
changes to the FIT profile being used. Rather than having information like Field Name,
Units, and Base Type encoded into the profile this information is included in 2 special
global messages that act as meta-data for the decode process. The developer data field
description is used to map data within a data message to the appropriate meta-data.

Table 8 - Developer Field Description

Byte Name Description

0 Field Number Maps to the
field definition number of a
field description Message

1 Size Size (in bytes) of the specified
FIT message’s field

2 Developer Data Index Maps to the
developer data index of a
developer_data id Message

Developer Data ID Messages

Developer data ID messages are used to uniquely identify developer data field sources,
a FIT file can contain data for up to 255 unique developers. These messages must
occur before any related field description messages.

Table 9 - Developer Data ID Message



Name Type Size Description

application_id uint8 16 16-byte identifier for
the developer

developer data_index uint8 1 Developer Data Index
that maps to this
Message.

Field Description Messages

Field description messages define the meaning of data within a dev field, a FIT file can
contain up to 255 unique fields per developer. These messages must occur in the file
before any related data is added.

Table 10 - Field Description Messages

Name Type Size Description

developer data index uint8 1 Index of the
developer that this
message maps to

field definition number uint8 1 Field Number that
maps to this
message
fit base type id uint8 1 Base type of the field
field name string 64 Name of the field
units string 16 Units associated with
the field
native field num uint8 1 Equivalent native
field number

Native Field Num Details

The native_field_num field is used to indicate that a field can be considered equivalent
to the corresponding field_number in the message that the developer data is included in.
This field can be used to indicate to data consumers that the developer considers its
data to be the same as native data.

Developer Fields that override native FIT fields shall preserve the units defined for that
field in the Profile.xlsx document. Scaling and offset defined in Profile.xIsx for the native
data fields shall not be applied to the developer data field. Instead, the developer data



field shall be logged with full precision and resolution using the appropriate base data
type.

For example, if overriding total_hemoglobin_conc in the record message, which has a
scaling of 100, the developer data field should be logged as a float (to keep two decimal
places of precision).

Developer fields will be written to the FIT file in such a way that decoders do not need to
manipulate them in any way. Decoders that are consuming developer data should not
trust that developer data is logged correctly. It is still strongly recommended to do some
basic data verification before attempting to display it.

Data Message

Once a global FIT message has been associated to a local message type, and the
format of the FIT fields defined, data messages may be written to the FIT file. Definition
messages have a minimum length of 8 bytes, excluding the record header; however,
data messages can be very compact.

Record Content
e
~ s
Record Data Fields
Headear (Mumber and Format specified in the Definition Message)
-3 Variable Content -

Figure 13. Data Message Structure.
A data message must start with a normal or compressed timestamp header indicating its

local message type, and the record content must be formatted according to the definition
message of matching local message type.

FIT File Example

The example FIT file in Figure 14 shows a simple FIT Activity file containing the 14-byte
file header, data records, custom developer data and 2 byte CRC.



File Header: | 14 Byte Header 1

Record Header Eecomd Cortent
P — A
—_— —

SURRO 1 | 2 o= |RRNASS] - | « oo NETJNIESH

n .,
uﬁ-“ln-lhmj R'.m’vnd thdIthu.T qul:lnF{qrpu} FannF{rrﬁ;:- qufgpma} Fakd f () Fhldl:lnl"l:u'rw}

T I
Record 1: |ﬂ'hbnﬂﬂﬂﬂ| | o u] o |

Local Mg Type 0 REchE tia. of Fisids
|D*Uﬂﬂﬂﬂ| | 4 | 15 | 22 | 1234 | 621463080 |
Data Massage h‘l:-ﬁ r:mum f tie_created
Local Meg Typed P — sarial_rumber
|u|wduuuu||u|u|zw|z[1|u|u|3|1|z|
Ot W!caaqt-j M.g,md Gl Mg Ho. FIII:iDu'f' Fbuhl:-ﬂ’
R pol yenuionll SRR X BT
|0*ﬂﬂﬂﬂﬂ| -l'i| 1 | 2 | 2 | 3 | 1 |15|1 |2 |1.‘Z|31|41|1 |2 |1 |ﬂﬂ|'ﬂ |
1 —— t
Durta Message spp_id ey _clata_ice
Local Msg Typed
Record 5 |djﬂmﬂﬂﬂ||ﬁ|ﬂ|2'1'5|5|ﬁ|1|2|1|1|2|2|1|2|3|G-‘ll1’|'|ll]f|
il lor Piessags _T Gma Mg o, Fisld Daf™ F-Ir.! Dal Figidl Daf® Figld Daf Field Daf
i e P a5 (cov_chata_ited  {fleki_cef_rum)  (base_ype_id)  {fekd_rame) funits)
Record 6 |0.1)PDUQQU| 1 o | o | i | "“doughnuts earned” | “doughnuts*
Diala Message —! iy d.au_d- Ibm by _idl T il
Ll Mag Typed fizdl_def_rum fiekd_riame
|ﬂ|10ﬂﬂﬂﬂ|lﬂ|ﬂ|2ﬂ |I|3[l|2|l|1|2!5|‘hﬂ|5| |1,32|1Iﬂ|1|‘.'||
——
Fiald Dwf [HR) Fiul'.‘uﬂf' Fhadd I:Iﬂf it Fﬂl‘!Dﬂf D Fiald Daf®
Dwetfin ion Message HR) {cad) [diat) (3pc) il
Dov Data Flag e
Local Megy Typa 0
|ﬂ;1+)ﬂﬂﬂﬂﬂ| 21-Iﬂ| B‘BJ 510 | 2800 I 1 |
fr r L T doughrasts_samed
spd
|%ﬂﬂﬂﬂﬂ| 1143| iﬂJ 2080 | 2520 I 1 |
1 [
Record 10: |n|1—+mnnnn| 144] 92 3710 | 3050 | 1 |
CRC: 2 Byte CRC

Figure 14. Definition and data message example.
Record 1 (definition message: ‘file_id’ (mesg num = 0x00))

Indicates the record is a definition message specifying the upcoming data messages (of
local message type 0) are:

« Little Endian

« Global Message Number 0O identifies FIT ‘file_id’ message

« The FIT file_id fields that will be included in the associated data message are:

» Field Definition Number: O (type); Size: 1 byte; Base Type: 0 (enum)

« Field Definition Number: 1 (manufacturer); Size: 2 bytes; Base Type: 132 (uint16)

» Field Definition Number: 2 (product); Size: 2 bytes; Base Type: 132 (uintl6)



» Field Definition Number: 3 (serial number); Size: 4 bytes; Base Type: 140
(uint32z)

« Field Definition Number: 4 (time_created); Size: 4 bytes; Base Type: 134 (uint32)

Global Message Number is found in the mesg_num type of the FIT protocol.

Field Definition Numbers for each FIT message are found in the FIT profile provided in
the SDK. Size and Base Type definitions are located in the fit.h file in the SDK, or as
listed in Table 7 below.

Record 2 (data message: ‘file_id’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0O:

Little Endian, FIT *file_id" message

Included Fields and Data:

type: 4* (activity file)

manufacturer: 15* (Dynastream)

product: 22

serial number: 1234

time_created: 621463080 (14 Aug 2009)

* These values are defined in the FIT protocol

Record 3 (definition message: ‘dev_data id’' (mesg num = 0xCF))
Indicates the record is a definition message specifying the upcoming data messages (of
local message type 0) are:

« Little Endian

Global Message Number 207 identifies FIT ‘dev_data_id' message

The FIT file_id fields that will be included in the associated data message are:

Field Definition Number: 1 (app_id); Size: 16 bytes; Base Type: 13 (byte)

Field Definition Number: 3 (dev_data_index); Size: 1 byte; Base Type: 2 (uint8)

Record 4 (data message: ‘dev_data_id’ (local msg type = 0))



Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0:

Little Endian, FIT ‘dev_data_id' message

Included Fields and Data:

app a:|44,1,22. 2 3,1,15,1,2,12,31,41,1,2,1,88,12, 13, 12 29|

dev_data_idx: O

Record 5 (definition message: ‘field description’ (mesg num = 0xCE))
Indicates the record is a definition message specifying the upcoming data messages (of
local message type 0) are:

- Little Endian

« Global Message Number 206 identifies FIT 'field_description’ message

« The FIT file_id fields that will be included in the associated data message are:
« Field Definition Number: 0 (dev_data_idx); Size: 1 byte; Base Type: 2 (uint8)
« Field Definition Number: 1 (field_def_num); Size: 1 byte; Base Type: 2 (uint8)
« Field Definition Number: 2 (base_type_id); Size: 1 byte; Base Type: 2 (uint8)
« Field Definition Number: 3 (field_name); Size: 64 byte; Base Type: 7 (string)

« Field Definition Number: 8 (units); Size: 16 byte; Base Type: 7 (string)

Record 6 (data message: ‘field description’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0:

« Little Endian, FIT *field_description’ message

Included Fields and Data:

dev_data_idx: 0

field_def num: 0

base _type _id: 1 (sint8)

field_name: "doughnuts_earned"



« units: "doughnuts”

Record 7 (definition message: ‘record’ (mesg_num = 0x14))
Indicates the record is a definition message specifying the upcoming data messages (of
local message type 0) are:

« Little Endian

« Includes Custom Developer Data

« Global Message Number 20 identifies FIT ‘record’ message

« The FIT record fields that will be included in the associated data message are:
« Field Definition Number: 3 (heart_rate); Size: 1 byte; Base Type: 2 (uint8)

« Field Definition Number: 4 (cadence); Size: 1 bytes; Base Type: 2 (uint8)

« Field Definition Number: 5 (distance); Size: 4 bytes; Base Type: 134 (uint32)

« Field Definition Number: 6 (speed); Size: 2 bytes; Base Type: 132 (uintl6)

« The Developer data that will be included in the associated messages are:

« Field Number: O; Size: 1 bytes; Developer Data Index: O

« Mapping the Dev Data Index and Field Number to previous dev_data_id
and field_description messages, indicates that this field is
doughnuts_earned

Global Message Number is found in the mesg_num type of the FIT protocol.

Field Definition Numbers for each FIT message are found in the FIT profile provided in
the SDK. Size and Base Type definitions are located in the fit.h file in the SDK.

Record 8 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0O:

Little Endian, FIT ‘record’ message

Included Fields and Data:

heart_rate : 140 (bpm)

cadence: 88 (rpm)



« distance: 510 (cm)
« speed: 2800 (mm/s)

« doughnuts earned: 1 (doughnut)

Record 9 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0O:

Little Endian, FIT ‘record’ message

Included Fields and Data:

heart_rate : 143 (bpm)

cadence: 90 (rpm)

distance: 2080 (cm)

-

speed: 2920 (mm/s)

doughnuts _earned: 1 (doughnut)

L]

Record 10 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted
according to the definition message of local message type 0O:

Little Endian, FIT ‘record’ message

Included Fields and Data:

heart_rate : 144 (bpm)

cadence: 92 (rpm)

distance: 3710 (cm)

speed: 3050 (mm/s)

doughnuts _earned: 1 (doughnut)

Note that in this example, the fields are defined in the order of increasing field number.
This does not have to be the case. Field definitions do not need to be in the order of
increasing field number, however, the order the fields are recorded in data message
MUST follow the order they are defined in the definition message.



Scale/Offset

The FIT SDK supports applying a scale or offset to binary fields. This allows efficient
representation of values within a particular range and provides a convenient method for
representing floating point values in integer systems. A scale or offset may be specified
in the FIT profile for binary fields (sint/uint etc.) only. When specified, the binary
quantity is divided by the scale factor and then the offset is subtracted, yielding a
floating point quantity. The field access functions within the SDK automatically handle
this conversion. If no scale and offset are specified, the field is interpreted as the
underlying type and no extra conversion Is necessary.

Table 11. Example Field Featuring Both Scale and Offset

Field Type Scale Offset Units

altitude uintl6 5 500 m

Table 12. Altitude Field Value Encoding

Quantity Value Field Value (Decimal) Field Value (Hex)
Height of Aconcagua 6960.8m 37304 0x91B8
Minimum Value -500.0m 0 0x0000
Maximum Value 12606.8m 65534 OxFFFE

Dynamic Fields

The interpretation of some message fields depends on the value of another previously
defined field. This is called a Dynamic Field. For example, field #3 of the ‘event’
message is ‘'data’ and is a dynamic field. If the ‘event’ field is equal to ‘battery’ then
‘data’ Is interpreted as ‘battery level’. Similarly, if ‘event’ is 'fitness_equipment’ then ‘data’
Is interpreted as ‘fithess_equipment_state’.



-
-1 Comp
-
-

Accumulate

Message onent g é 2 g 3§ RefField RefField
1 Name ii Field Hame Field Type Array s o = & Hame Value Comme
60 event
61 253 timastam date_tima 5
2 Jewt eedn
63 1 avant_typa avant_typa
64 2 dataig uint 16 data 1 16
65 1 data uint32 1
L1 limer_rigger tirmer_irigger 1 avent times
&7 course point_index MEsS, i 1 avent Ccourse_paint
68 Subfields 1000 v
82 sal_molion_type uinti2 miglson 1,1 5 16,16 | avent malon_lype sl
a3 detected_mation_type  molion_type event mation_type_detected
a4 sport_paint uint32 score 1,1 16,16 | avant spad_point

ag A et arnan srirtf

Figure 15. Sample Dynamic Fields in the ‘Event’ Message.
These alternate field interpretations (e.g. ‘battery_level’ and ‘fitness_equipment_state’)

are known as subfields and differ somewhat from regular fields. They have no field
number (‘Field Def # as shown in the figure above); instead, the field number of the
main field (e.g. ‘data’) always applies. Subfields must have one or more reference field
and reference value combinations. When the reference field contains the reference
value, the field shall be interpreted using the properties (name, scale, type etc.) of the
subfield rather than the main field. Reference fields must be of integer type, floating
point reference values are not supported. If none of the reference field/value
combinations are true then the field is interpreted as usual (as ‘data’ in this example).
Subfields may be of different type or size so long as each subfield is not larger than the
main field. Care must be taken to define reference field/value combinations that are
unambiguous for each desired subfield.

Subfields may contain components. The FIT protocol supports nested components
meaning subfields may contain components that are also subfields.

The advantage of dynamic fields is that their use allows the interpretation of a field to
change, without the usual prerequisite to write a new message definition. This optimizes
the size of a file.

Components

Components are a way of compressing one or more fields into a bit field expressed in a
single containing field. This can allow some space saving/compression. On decode the
SDK will automatically create new field objects and extract the data from the containing
field. A destination field of the same name must be defined for every component in the
containing field but is not included in the message, it will be automatically generated by
the decoder. The destination field can itself contain components requiring expansion.



xE

:u::“' ; Field Name Field Type zr Components g g i s :::“F:” Ret Field Value
= & =] = (= B B EEE [=

| ment

i =3 date Gime a5

I L] =4

[ 1 even_type event_type

! 2 detalE wint1s data 1 18

. 3 e wnizz 1

! timer_trigger tmer_trigger 1 mvent tmer

i COUTSE_Sant_ndas BEERAE_Ndax 1 avant COUTSE_paant

| spo_poeni i 32 score,ppponeni_scons 1 1616 ewent

o e Ob 0

4  evenl_grosp
T BEore il 18

Comggnents

&  opponent_scors w1 §

. Diastinati
Figha

Figure 16. Example Components in the ‘Event’ Message.
As shown in Figure 16, the subfield ‘gear_change_data’ contains four components

(‘rear_gear_num’, ‘rear_gear’, ‘front_gear_num’ and ‘front_gear’). This means when the
subfield is encountered in an event message (i.e. if ‘event’ is ‘front_gear_change’ or
‘rear_gear_change’, see Dynamic Fields for discussion of Subfields) the data is
expanded into the four destination fields of the same name.

The 'bits’ property is used to specify the format of the data in the containing field; N bits
of data are right shifted from the containing field to generate the data for the destination
field. Therefore all low order bits of the containing field must be contiguous component
data. Extra undefined high order bits will be ignored by the decoder. The decoder will
continue gracefully if the containing field is smaller than expected (i.e. it runs out of bits).
The maximum value for ‘bits’ is 32. Even though containing fields are often a byte array,
‘bits’ need not be a multiple of 8. The decoder will correctly access successive array
elements in the containing field in order to retrieve sufficient bits (for example to extract
16 bits from a containing field of basetype byte[]).

Scale and offset must be specified for all components even if these are 1 and 0.
However, scale and offset will not be applied to destination fields with types of string or
enum.

=
Event Mesg| (x29EB0940 |42| 0%27010E08 | o
' ' y e
timestamp anent data
{pear_change_data)
Event Mesg L L4
After
Companent OxZ9BROS4D |42| O0x27010E08 Jw-wa Dx0E(0x01|0K2T
Ex
Prssin ' ' ' bhoty
timestamp event daty Fear_gear_num
{gear_change:_daka) rear_gear | frant_gear

frant_gear_num



Figure 17 Example Component Expansion.
Figure 17 further demonstrates component expansion. During decode the decoder

encounters an event message with 3 fields in the FIT source. Since there are 4
components defined for the active subfield (gear_change_data) these fields are
generated and populated with data from the containing field in accordance with the “bits’
property. The message object sent to the OnMesg handler will contain 7 fields.

Common Fields (Field#, Field Name, Field Type)

Certain fields are common across all FIT messages. These fields have a reserved field
number that is also common across all FIT messages (including in the manufacturer
specific space).

Message Index (Field # = 254, message_index, message_index)

This field allows messages to be indexed with a common method.

The SDK C code provides a FIT_LookupMessage function that returns the location of a
message in a file by specifying the global message number and message index. The
message index field also contains a bit to indicate a selected message. For example,
the active user profile could be selected by setting the selected bit in the message index.
Note, message_index fields must be recorded sequentially (i.e. numbered starting from
0 and incremented in steps of 1).

Message index can be used to refer to a previously defined record. For example, the
user_profile message has a message_index field. Multiple user_profile messages may
be recorded using the message_index field. The blood_pressure message has a
user_profile_index field that relates back to the user_profile_message. For example, if
the blood_pressure message has a user_profile_index =1, this will correspond to the
user_profile message that has message_index=1.

Timestamp (Field # = 253, timestamp, date_time)

Timestamp is a common UTC timestamp field for all FIT messages. This field may be
used in combination with the compressed timestamp header.

Part Index (Field # = 250, part_index, uint32)

Part index acts as a sequence number and is used to order multi-part data. Each group
of multi-part data must start with part_index 0 and each message increments by one.
When part_index 0 is encountered again it indicates the start of a new multi-part block.

Best Practices

To properly encode/decode FIT files, the following MUST be included:



» FIT File header
« Data Record 1: file_id Definition Message
- Data Record 2: file_id Data Message

- Data Records: Ensure appropriate definition messages are included in the FIT
file prior to recording any associated data messages. Note field definitions do not
need to be in the order of increasing field number, however, the order the fields
are recorded in a data message MUST follow the order they are defined in the
definition message

2 Byte CRC

File ID Messages

The purpose of the ‘file_id" message is to uniquely identify the file in a global system.
The fields in the data message may include file type, manufacturer, product, serial
number, time created and file number depending on the FIT file type.

Defining Data Messages

A data message must always be specified by a definition message prior to recording any
data. Once a data message has been properly defined, the FIT file can be properly
decoded. Even if a device’s implemented profile does not include all of the FIT
messages or fields contained in the FIT file, it will be decoded without error:
unrecognized data will be ignored, and any expected values not included will be
assigned invalid values. If a data message is recorded without an appropriate definition
message, an error will occur.

Often, multiple data messages of the exact same format are recorded. In this case, it is
best practice to use a single definition message for all data messages; rather than
recording a definition message for each data message. For example, in Figure 18, two
types of data messages are being recorded: lap and record messages. The FIT file on
the left contains a definition message for each data message. Although technically
correct, this method of recording data is sub optimal; instead, define the lap and record
messages once at the beginning of the file, followed by all lap and record messages as
shown in the FIT file on the right.



Definition_Message_1 (Lap) Definition_Message_1 (Lap)

Data_Message 1 (Lap) Definition_Message_2 (Record)

Definition_Message_2 (Record) Data_Message_1 (Lap)

Data_Message_2 (Record) Data_Message_2 (Record)

Data_Message_1 (Lap} Data_Message_2 (Record)

Definition_Message_2 (Record)

i I

1 1

1 ]

1 1

I i

i 1

1 I

i [}

1 1

] )

1 ]

I i

] I

1 [}

] 1

: Data_Message 1 (Lap) !

1 1

)

1 1

] )

] I

1 i

! :

i 1

Data_Message_2 (Record) ; i
1 1
] )
1 1
i i

| Definition_Message_1 (Lap)

________________________________________________________________

Correct (not optimal) . Best Practice

Figure 18. Best Practice for Defining Data Messages.

Redefining Local Message Types

Local message types can be redefined within a single FIT file. Figure 19, for example,
shows a FIT file using a single local message type (i.e. 0) to record both the 'file_id" and
‘record’ data. Note that this FIT file contains the same data that is shown earlier in the
FIT File Example. The number of local message types used in a file should be
minimized in order to minimize the RAM required to decode the file. For example,
embedded devices may only support decoding data from local message type 0. The
advantage of using multiple local message types is the file size is optimized because
new definition messages are not required to interleave different message types. Multiple
local message types should be avoided in file types such as settings where messages of
the same type can be grouped together.

Care must be taken when redefining local message types. If data message
formats are recorded without the new definition message, unpredictable results
will occur and may cause the decoder to fail.

SRR T

Hecard Header Hecard Content

Record 1: |n€1}nahnnn| |0|u| o 5|u|1|n|1|2|132|2|2|132| 3|4|.Lm||.|4|13-||

Record 2: |@unirmnn| |4| 15 | 23 | 1234 | 621463080 |

Record 3: |ui1}nuinnon||n|u| 20 4|3|1|2|a|1|2|5|4|13.||s|2|132|
i

Definition Messaga |
Local Mg Typs o——

Record 4: |n}qunbnnn| |1.m| BB| 510 | 2800 |

Record 5: |ﬂnn+muu-| |1a3| 9n| 2080 | 20920 |
T

Record 6: |uhur+mou| |1u| 92| 3710 | 3050 |
L

CRC: 2 Byte CRC




Figure 19. Redefining local message type within a single FIT file.

FIT Message Conversion

Reference C, C++, C#, and Java code for both embedded and PC conversions of FIT
files are available in the downloadable SDK. The FIT protocol is fully backwards
compatible, ensuring that devices with different versions of the FIT protocol can share
files. The conversion tool handles all conversion-related issues such as differences in
device architecture (big endian vs. little endian), and differences in messages between
devices which have different versions of the FIT protocol.

Figure 20 takes the example shown earlier in FIT File Example and shows how an
iIncoming message is encoded according to the device’s implemented Product Profile
and added to the FIT file. In this case, the data corresponding to Record 5 of the
previous example is used.

DEVICE_A DEVICE_B
Incoming Measured
Data: F————— + FIT File
I
heart_rate: 140 bpm 1
cadence: 43 rpm 1 l
distance: 510 cm i
speed: 280 myi's 1 Received Encoded
I Record 5:
Inplemented i B
Product Profile Fila heart_rate: 144
FIT message: recond : Transfer cadence: BE
Encoded Record 5: : distance: 510
FIT Fields: 3 = R I spaed: 2800
heart_rate:  wints eart_rate:
Pt iR carence: BB : l Implemented
distance:  uint32 distance: 510 I Product Profile
spesd: uint 15 speed: 2800 I Decoded Record 5: FIT message: record
i
i 1 hgart_[al;e: 1) FIT Fields:
I cadence: GE heart_rate:  uint®
FIT File ] distance: 510 cadence: uintd
R I grade:  OxFFFF distance: k32
_________________ I pawer On7FFF grade: uint16

[Cata Reconds pOwer sint1&
(FIT Msgs)
_________ I Application
CRC : \_

Figure 20. Conversion of a FIT message.
In this simplified example, Device_A's implemented product profile includes the FIT

‘record’ message and its heart_rate, cadence, distance, and speed FIT fields. The
incoming data is formatted and encoded according to the product profile and added to
the FIT file. When all records have been added and the FIT file is complete, it is ready
for transfer.

Device_B, on the other hand, has a slightly different implemented product profile that
still includes the FIT ‘record’ message; however, this profile has a different set of FIT
fields defined. Device_A and Device_B both have the heart_rate, cadence, and distance
FIT fields, but Device_A includes speed, whereas Device_B includes grade and power
data. As FIT is fully compatible across different versions of global and product FIT
profiles, the protocol will automatically account for these differences.



As illustrated in Figure 20, Device_B receives the FIT file, and the decoder will interpret
and decode the information it recognizes (i.e. heart_rate, cadence, distance), ignore
data it does not recognize (i.e. speed), and populate the remaining FIT fields with invalid
values according to its base type (i.e. grade and power). In this way, the FIT file is
maintained and can be transferred again in its original form, unrecognized or missing
data is processed by Device_B without causing errors, and the resultant information is
passed in the form of a C structure or object to Device_B'’s application for further use.

Compatibility

The FIT protocol is designed for extensibility. The software development code provided
Is designed to maintain compatibility as FIT files are transferred between systems. For
compatibility between systems to be maintained, the FIT profile must be strictly adhered
to. There is built in flexibility for system architectures. Endian architecture is described in
each message definition and automatically handled within the FIT SDK.

Common FIT File Applications

Certain applications of FIT files lead to a natural grouping of messages based on
purpose. Refer to the FIT File Types Description document for more details on the
common message groupings and methods for best practice of the following file types:

Table 13. Common FIT File Types

FIT File Type Purpose

Settings Describes a user's parameters such as Age,
Weight, and Height

Activity Records data and events from an active
session
Workout Records data describing a workout's

parameters such as target rates and durations

Blood Pressure Provides summary data from a blood pressure
device
Weight Provides summary data from a weight scale
device

Plugin Framework



Version 16.30 of the FIT SDK introduced a plugin framework that allows for the
manipulation FIT files before the output is pushed to the end-application. This allows for
the pre-processing of messages before the consumer of the data receives messages
and definitions In its listener call-backs.

Plugin Architecture

The plugin architecture allows for developers to perform pre-processing on FIT data
before the final output is returned to the application’s subscribed listeners. A new
MesgBroadcaster was created called the BufferedMesgBroadcaster which receives the
messages from the decoder as they are processed by invoking the Run() method.
Multiple plugins can be registered to a BufferedMesgBroadcaster and when messages
come in they are dispatched to the OnincomingMesg() handler in the plugin. Once the
decoder finishes the Run() function completes. The consumer application will then call
the Broadcast() method on the BufferedMesgBroadcaster. The broadcast method
causes the plugins to process each individual message and once processed they are
sent to the application’s registered listeners.

The plugin framework is implemented in C++, C#, and Java with very similar Application
Programming Interfaces. The SDK includes the "Heart Rate to Record” Plugin which
allows applications to process Garmin’s HRM-Tri "hr" messages and appends the heart
rate values into the appropriate record message.

Below is a block diagram below that shows the functional pieces that were introduced in
the SDK to support plugins and the differences needed in the application code to get
started using plugins. The example is based on the C++ implementation.

Inkde Devicelnfahlesg o
o' fHa
Tesg] i —
P 1l Existing fl
lanoie message
1 Functiomality

e sy Weespliraadcaster fufferndbtaspbrasdcaster
extends MesgBroadcaster]

static void Main| AddListaner & plugin |
z ade it Plugingl; BufferediesgRroadcaste

Figure 21. Plugin Architecture Block Diagram.



Plugin Example (HR)

The Heart Rate to Record Plugin was created to parse Compressed Heart Rate data
into many record messages. It takes a message like:

Hr Mesg:

. filtered_bpm: 72|69|67|67|67|69]70|70 Units: bpm
. event_timestamp_12: 204|3|118|10|91|233|246|129|85|204]40|197 Units: none

« event_timestamp (Generated through Component Expansion) :
45544.950000|45545.840000]45546.760000|45547.640000}45548.490000]45549.34(
Units: seconds

And converts it into multiple record messages shown below:

« Record Mesg

timestamp: 799247263 Units: seconds
« heart_rate: 67 Units: bpm

« Record Mesg

« timestamp: 799247264 Units: seconds
« heart_rate: 67 Units: bpm

« Record Mesg

« timestamp: 799247266 Units: seconds
« heart_rate: 69 Units: bpm

« Record Mesg

« timestamp: 799247267 Units: seconds
« heart_rate: 70 Units: bpm

« Record Mesg

« timestamp: 799247268 Units: seconds
« heart_rate: 70 Units: bpm

The plugin pre-processes all of the HR messages in a file, and maps the timestamps
back to record messages and adds the heart rate values to the appropriate record
messages.



Three D Sensor Adjustment Plugin Explanation
and Example

Input:
Calibration message:
- Calibration Factor: Used to convert the data samples from counts to the desired

units (i.e. deg/s, g, G, etc.)

« Calibration Divisor: The denominator of the calibration factor. Used to convert the
data samples from counts to the desired units (i.e. deg/s, g, G, etc.)

« Level Shift: The applied shift, in counts, that was used to achieve a positive-
valued measurement in the ADC conversion

« Offset Calibration: This Is determined in the factory and when combined with a
free floating accelerometer or a non-spinning gyroscope should produce a
sample close to zero.

« Orientation Matrix: Can support values from +V/3 and —/3 , which allows for
mounting sensors at many different angles and defers adjusting the data until
more processing power is available

« Sensor Type: The sensor type is an enum value used to indicate which sensor
the calibration message is for. (Accelerometer = 0, Gyroscope = 1,
Magnetometer = 2, Barometer= 3, Invalid =255)

Data message:

« X, Y, and Z are the raw 3-axis sensor measurements. These values are limited to
16-bit accuracy and 30 samples per message.

Calibration Adjustment:

input X level Shi ft of fsetCalX
arientationara|* inputy — |leveiShift| — |of fsetCa *cl F actor
' iondard nputy level Shi CalY [F
inputZ level Shi ft of fsetCalZ

Figure 22. Orientation mafrix.

*Note that the orientation matrix is a row major representation of a three by three matrix
Output:

The Three D Sensor Adjustment Plugin does the calibration adjustment and adds the
calibrated values to the data message under the appropriate fields.

Example:



The Three D Sensor Adjustment Plugin was created to adjust the X, Y, and Z data points
generated by the sensors (Accelerometer, Gyroscope, and Magnetometer) and convert
them to the desired units. It takes messages that look like:

three_d_sensor_calibration Message:

« timestamp: 3 Units: s

calibration_factor: 5 Units: deg/s

« calibration_divisor: 82 Units: counts
« level_shift: 32768

- offset_cal: 22|13|34

« orientation_matrix: 0|-1]|0|0|0|-1|1|0|0

« sensor_type: 1

gyroscope_data Message:

timestamp: 3 Units: s

sample_time_offset: 0|100|200|300|400|500|600|700 Units: ms

gyro_x: 32592|32242|32411|32646|32724|33000|32536|32950 Units: counts
gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts

gyro_z: 33059|32190|33183|33085|32645|32928|33008|32785 Units: counts

timestamp_ms: 658 Units: ms

And alters the data message to look like:
gyroscope_data Message:

« timestamp: 3 Units: s

- sample_time_offset: 0|/100]|200|300]|400|500|600|700 Units: ms

. gyro_x: 32592|32242|32411|32646|32724|33000|32536/32950 Units: counts
» gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts
« gyro_z: 33059|32190|33183|33085|32645|32928|33008|32785 Units: counts
« timestamp_ms: 658 Units: ms

- calibrated_gyro_x:
-0.2439024|6.829268|-15.67073|2.256098|22.31707|2.378049|9.45122|11.76829
Units: deg/s



« calibrated_gyro_y:
-15.67073|37.31707|-23.23171}-17.2561|9.573171|-7.682927|-12.56098|1.036585
Units: deg/s

- calibrated_gyro_z:
-12.07317|-33.41463|-23.10976|-8.780488|-4.02439|12.80488|-15.4878|9.756098
Units: deg/s

Figure 23 shows the flow of input and output messages through the Three D Sensor
Adjustment Plugin.

three_d_sensor_calibration
Message:

timestamp: 3 s

calibration_factor: 5 deqls
calibration_divisor: 82 counts
level_shift: 32768

offset_cal: 22|13]34
orientation_matroc: 0]-1]01010]-1] 2|00
sensor_type: 1

gyroscope_data Message: l gyroscope_data Message:

timestamp: 3 s Th D Se timestamp: 3 s
sample_time_offset: 0 ms L M::‘h'l'l n:EF.:r in * sample_time_offset: 0 ms
gyro_x: 32592 counts . ug gyro_x: 32592 counts

gyro_y: 32785 counts gyro_y: 32785 counts

gyra_z: 33059 counts gyro_z: 330569 counts
timastamp_ms: 658 ms timestamp_ms: 658 ms
calibrated_gyro_x: calibrated_gyro_x: -0.2439024 deg/s
calibrated_gyro_y: calibrated_gyro_y: -15.67073 deq's
calibrated qyro z: calibrated gyro z: -12.07317 deq's

Figure 23. Three D Sensor Adjustment Plugin Miustration.

Revision History

Revision Effective Date Description
1.0 May 2010 Initial Release
§ March 2011 Updated License
1.2 April 2011 Updated File Header
InformationCorrected

Compressed Timestamp
header description

1.3 April 2012 Corrected minor errors in
documentation (omissions,
typos, incorrect data)

1.4 February 2013 Updated templateUpdated
agreementClarified global
profile usageClarified FIT
basetype definitions



Revision Effective Date Description

15 February 2014 Clarified ArraysClarified
SubfieldsClarified Common
FieldsUpdated template

1.6 May 2014 Clarified Components
1.7 August 2014 Clarified Scale/Offset Usage
1.8 October 2015 Added chained FIT filesAdded

Plugin Framework
1.9 April 2016 Added Developer Data

2.0 May 2016 Release for FIT 2.0Corrected
Errors in Developer Data

2.1 June 2016 VirbX PluginCorrected some
Typos
2.2 August 2016 Add Invalid Values for 64-hit

integer typesAdd Description
of Native Overrides in
Developer Data

2.3 November 2016 Clarify Native Overrides in
Developer Data

24 March 2019 Remove 255 byte message
size limitation

N @ @

Developer Blog Garmin Brand Contact Developer Forum
Guidelines

£2023 Garmin LTD or Its Subsidiaries +« Terms ofUse = Privacy




GARMIN.




