Syntax Summary for DSQGEN

Page 10 of 10

1. Introduction
DSQGEN defines three statement types that can be used in a query template:

· Substitution Definitions, explained in Clause 3
· Control Statements, explained in Clause 4
· Query text, explained in Clause 5
General usage and command line options can be found in Clause 6.
Some sample query templates are provided in Clause 7
2. Distributions

2.1. General Information

A distribution is a weighted set of related values. A distribution can contain an arbitrary number of members. Each distribution defines the number of related values and value weights that is associated with each member. The weights within a distribution are used to select one or more values from a selected member of the set.

2.2. Distribution Statements

Not supported in this release.
3. Substitution Rule Definitions

3.1. General Definition Syntax

A query template can define any number of substitution rules. The general syntax for a substitution rule definition is:

DEFINE <tag> = <substitution type> [(<substitution parameters>)] ;

<tag> is the identifier for the substitution rule that will be used later in the query template. It must be unique within a query template.

<substitution type> defines the way in which a substitution value will be selected for this definition. The acceptable values are explained in subsequent sections.

<substitution parameters> are the specific attributes for the selected <substitution type>

3.2. Static Definitions
Any DEFINE in a query template which does not use one of the substitution types defined in Clause 3.4 is assumed to be a static substitution. This provides a fixed value that can be used in the query template. This can be useful for values that are the same for all uses of a particular template (e.g., query number, preamble text). The specific syntax for a static substitution rule is:

DEFINE <tag> = “<value>”;

<tag> is the identifier for the substitution rule that will be used later in the query template. It must be unique within a query template.

<value> defines the static text which should be substituted for occurrences of [<tag>] in the query text. Quotation marks may be included in <value> by escaping them with a backslash (‘\’);.

3.3. Expressions as Arguments

3.3.1 Arithmetic Expressions

QGEN supports a limited expression parser, which allows simple arithmetic to be used to define the arguments to a substitution. As an example, RANDOM(1, 4, uniform) and RANDOM(1, 2 + 2, uniform) are equivalent. All arguments are assumed to be integers, except in the case of addition, where addition is overloaded to mean concatenation if either argument is a string. The table below summarizes the support arithmetic operations.
	Operation
	Syntax
	Data Type

	Addition
	<e1> + <e2>
	String if <e1> or <e2> is a string; integer otherwise

	Subtraction
	<e1> - <e2>
	Integer

	Multiplication
	<e1> * <e2>
	Integer

	Division
	<e1> / <e2>
	Integer

3.3.2 Keywords as Arguments
QGEN recognizes some keywords as integer constants. The table below summarizes the values that are substituted for them:

	Keyword
	Value

	SCALE
	Scale factor in GB set with –SCALE command line flag

	SCALE_STEP()
	Scale factor index (1 = 1GB, 2 = 10GB, 3 = 100GB, 4= 300GB, 5=1000GB, 6=3000GB, 7=10000GB, 8=30000GB, 9=100000GB)

	_SEED
	Current RNG seed

	_QUERYNUMBER
	Sequence number within a query set (1-based integer)

	_TEMPLATENUMBER
	Template number

	_STREAMNUMBER
	Stream number (0-based integer)

3.3.3 Nested Substitutions

Substitutions are evaluated in order in a query template and can be nested. References to distributions must be enclosed in square brackets. For example, the following definitions will produce a random date within a particular year between 1999 and 2004:

DEFINE YEAR = RANDOM(1999, 2004, uniform);

DEFINE SALE_DATE = DATE([YEAR] + “-01-01”, [YEAR] + “-12-31”, sales)
3.4. Substitution-specific Syntax

3.4.1 RANDOM Substitution

A RANDOM substitution type allows a template to use a randomly-generated integer. The specific syntax for a RANDOM substitution rule is:

RANDOM (<min>, <max>, <distribution>)

<min> is the minimum value for the generated integer value

<max> is the maximum value for the generated integer value

<distribution> is one of:
UNIFORM: a uniform distribution

EXAMPLE: DEFINE foo = RANDOM (1, 10, UNIFORM);
defines a substitution rule generating a uniformly distributed, random integer in [1..10]
3.4.2 DIST Substitution

A DIST substitution type allows a template to use one of the arbitrary distributions defined in conjunction with DBGEN2 (through the .dst files and their resulting .idx file). The specific syntax for a DIST substitution rule is:

DIST (<name>, <value set>, <weight set>)

<name> is the name of one of the distributions defined in tpcds.idx

<value set> is the 1-based index for the value to be returned from the distribution tuple

<weight set> is the 1-based index for the selected weighting from the distribution tuple

EXAMPLE: DEFINE foo = DIST(names, 1, 2);
in conjunction with a distribution called ‘names’ that defines names and their correlation to gender (i.e., the first weight associated with a name is the likelihood of the name being used for a male, and the second weight is the likelihood that the name will be used for a female), this substitution would produce a woman’s name.
EXAMPLE: DEFINE foo = DISTMEMBER(“names”, first, female);
would return the same information assuming that the distribution definition contains a line like: ‘set names = (first : male, female, combined)’
3.4.3 DISTMEMBER Substitution

A DISTMEMBER substitution type returns a specific entry from one of the arbitrary distributions defined in conjunction with DBGEN2 (through the .dst files and their resulting .idx file). The specific syntax for a DISTMEMBER substitution rule is:

DISTMEMBER (<name>, <index>, <value set>)

<name> is the name of one of the distributions defined in distribution file (e.g., tpcds.dst/tpcds.idx)

<index> is the 1-based index for the distribution tuple (i.e., the “row).

<value set> is the 1-based index for the value to be returned from the distribution tuple (i.e., the “column”). ”). If the distribution definition includes column aliases (through the ‘set names = …’ syntax) an alias can be used in place of the numeric value.
EXAMPLE: DEFINE foo = DISTMEMBER(names, 1, 2);
would return the second value from the first row of a distribution call “names”.
EXAMPLE: DEFINE foo = DISTMEMBER(“names”, 1, female);
would return the same information assuming that the distribution definition contains a line like: ‘set names = (name : male, female, combined)’
3.4.4 TEXT Substitution

A TEXT substitution type allows a template to use arbitrary text substitutions, including “nested” substitution in which a text value used to replace a particular substitution tag may itself contain another substitution tag. This allows the possibility for recursive substitution and quite complex substitutions. The specific syntax for a TEXT substitution relies on a set of replacements which are enclosed in braces:

 TEXT ({ “<string>”, <weight>} , … { “<string>”, <weight> });

<string> is the text that is to be substituted into the query template. Note that the text is surrounded by quotation marks to allow spaces to be imbedded.

<weight> is the relative likelihood for each replacement within the TEXT substitution. As with the relative weightings within the distribution files, there is no requirement that the total values add up to any particular value (e.g., 100).

EXAMPLE: DEFINE foo = TEXT ({“the good”, 10}, {“the bad”, 20 }, {“and the ugly”, 30});
This definition would cause one of three string literals to be substituted into the query template. Note that the second is twice as likely to be selected as the first and the third is three times as likely as the first.
The substitution strings my contain substitution tags. When a substitution string is selected for use in a query template, it will be recursively evaluated until all substitution points have been satisfied. The resulting string will then be returned.
EXAMPLE:
DEFINE dog = TEXT ({“lab”, 10}, {“poodle”, 20 }, {“pug”, 30});
DEFINE dog_color = TEXT ({“brown”, 10}, {“black”, 20 }, {“gray”, 30});
DEFINE fish = TEXT ({“shark”, 10}, {“guppy”, 20 });
DEFINE fish_color = TEXT ({“blue”, 10}, {“orange”, 20 }, {“green”, 30});
DEFINE pet = TEXT({“[dog_color] [dog]”, 10}, {“[fist_color] [fish]”, 10};
This definition would generate appropriate color and pet combinations

3.4.5 DATE Substitution

A DATE substitution type is a special type of RANDOM substitution, which produces a random ASCII date. The result is a string literal of the form “yyyy-mm-dd”.. The specific syntax for a DATE substitution rule is:

DATE (<min>, <max>, <distribution>)

<min> is the minimum value for the generated date, of the form “yyyy-mm-dd”

<max> is the maximum value for the generated date, of the form “yyyy-mm-dd”

<distribution> is one of:
UNIFORM: a uniform distribution
SALES: the sales likelihood defined as part of the calendar distribution
RETURNS: the returns likelihood defined as part of the calendar distribution

EXAMPLE: DEFINE foo = DATE("2002-01-01", "2005-12-31", SALES);
defines a substitution rule generating a date in [2002 – 2005], skewed to mimic intra-year sales patterns

3.5. Substitution Modifiers

The substitution types defined in 3.4, produce a single, random value. DSQGEN also provides additional syntax to produce ranges or lists of values. Refer to Clause 5, “Substitution Usage” for more information on how to use the set of values returned by a range-enabled substitution. The general syntax for a range-enable substitution definition is:

DEFINE <tag> = <modifier keyword> (<single value substitution> , <range parameter>)

<tag> is the identifier for the substitution rule that will be used later in the query template. It must be unique within a query template.

<modifier keyword> either RANGE or LIST. See below for more detail.

< single value substitution > is one of the substitution types defined in Clause 3.4, Substitution-specific Syntax
<modifier parameter> is the specific parameter for the selected <modifier keyword>

3.5.1 RANGE Modifier

The RANGE keyword alters the enclosed single-value substitution, so that end points or a range are generated whenever the associated tag is encountered in a query template. The syntax for a RANGE substitution is:

RANGE (<single value substitution> , <range parameter>).

< single value substitution > is one of the substitution types defined in Clause 3.4, Substitution-specific Syntax
<range parameter> is the percentage of the entire distribution that the range should represent.

EXAMPLE: DEFINE foo = RANGE(RANDOM (1, 10, UNIFORM), 30);
defines a substitution rule selecting 30% of the numbers for 1 to 10. Possible return values could be [1, 3] or [7, 9].
EXAMPLE: DEFINE sales_date = RANGE(DATE("2002-01-01", "2005-12-31", SALES), 5);
defines a substitution rule selecting 5% of the sales occurring in 2002-2005. Since the skewed SALES distribution is used, the size of the returned range (i.e., the number of days between the beginning date selected and the ending date selected), will vary. Since more sales occur in December, the substitution will return a short range when it select a start date late in a calendar year, and longer ranges otherwise.
The range modifier can be used on RANDOM, DIST and DATE substitutions.

3.5.2 LIST Modifier

The LIST keyword alters the enclosed single-value substitution, so that a comma-separated sequence of values is generated whenever the associated tag is encountered in a query template. The generated sequence may contain duplicate values. For a sequence of unique values, use ULIST(). The syntax for a LIST substitution is:

LIST (<single value substitution> , <list length>).

< single value substitution > is one of the substitution types defined in Clause 3.4, Substitution-specific Syntax
<list length> is number of values to return.

EXAMPLE: DEFINE brand_id = LIST(RANDOM(1, 5, UNIFORM), 3);
defines a substitution rule selecting 3 of the numbers for 1 to 5. Possible return values could be “1, 3, 4” or “5, 2, 3”. The returned string does not include quotation marks.
The range modifier can be used on RANDOM, DIST, DATE and TEXT substitutions.
3.5.3 ULIST Modifier

The LIST keyword alters the enclosed single-value substitution, so that a comma-separated sequence of unique values is generated whenever the associated tag is encountered in a query template. For a sequence of values that may contain duplicates, use LIST(). The syntax for a ULIST substitution is:

ULIST (<single value substitution> , <list length>).

< single value substitution > is one of the substitution types defined in Clause 3.4, Substitution-specific Syntax
<list length> is number of values to return.

EXAMPLE: DEFINE brand_id = LIST(RANDOM(1, 5, UNIFORM), 3);
defines a substitution rule selecting 3 of the numbers for 1 to 5. Possible return values could be “1, 3, 4” or “5, 2, 3”. The returned string does not include quotation marks.
The range modifier can be used on RANDOM, DIST, DATE and TEXT substitutions.
3.6. ROWCOUNT

DSQGEN defines a built-in function: ROWCOUNT. The function returns the defined row count for a named distribution or table, allowing for scaling changes as appropriate. A call to ROWCOUNT() can be substituted for any integer parameter in the substitutions defined above.

3.6.1 Single Table or Distribution

In this form, ROWCOUNT returns the number of unique IDs in a table of distribution. Table names are compared against the entries in scaling.dst, so that both populated and PSEUDO tables (i.e., scaling entries used for non-table cardinality settings) can be used. The syntax for a call to the function is:

ROWCOUNT(“<name>”)

<name> is the name of a table or distribution defined by tpc-ds.

EXAMPLE: ROWCOUNT(“calendar”)
return 366 – the number of rows in the calendar distribution.
3.6.2 Double Table

In this form, ROWCOUNT returns the lower of the number of unique IDs found in the two named tables. Table names are compared against the entries in scaling.dst, so that both populated and PSEUDO tables (i.e., scaling entries used for non-table cardinality settings) can be used. The syntax for a call to the function is:

ROWCOUNT(“<name>”, “<name>”)

<name> is the name of a table or distribution defined by TPC-DS.

EXAMPLE: ROWCOUNT(“active_cities”, “store”)
returns the number of active cities in the data set, subject to an upper bound of the number of rows in the store table.
3.7. Pre-defined Substitution Values

DSQGEN defines a number of substitution values that are useful in automating and documenting query executions. Each pre-defined substitution name may be used throughout a query template. The pre-defined substitution values are summarized in Table 3‑1. All pre-defined substitutions and vendor-specific substitutions (see 3.8) begin with an underscore (‘_’) to avoid naming conflicts with routine query substitution tags.
_LIMIT is a special case, in that it may be both defined in a query (using the DEFINE syntax) and employed in the body of the query template. The DEFINE statement must set _LIMIT to an integer constant equal to the maximum number of rows to be returned when the template is executed as a SQL query. If _LIMIT is not included in a query template, then all rows from a query are to be returned. See 3.8 for details on the precise syntax substituted for _LIMIT in the body of a query template.

Table 3‑1 Pre-defined Substitution Values

	Name
	Description

	_QUERY
	The sequence number of the query within a particular stream, beginning with 1.

	_STREAM
	The stream number that is executing, beginning with 0.

	_SEED
	The current RNG seed used for query generation

	_TEMPLATE
	The name of the file being used as the template for this query.

	_LIMIT
	The maximum number of rows returned by a query.

3.8. Vendor Specific Syntax
3.8.1 Dialects
DSQGEN supports a limited set of vendor-specific syntax, using the statements define above, to address different SQL dialects. Each set of vendor-specific substitutions is defined in a separate file, using the naming conventions in Table 3‑2 Vendor Dialect Files. The command line option ‘DIALECT’ determines which file is selected. If no DIALECT option is set on the command line, the ANSI dialect is assumed.

The following sections define the substitutions that must be included in a dialect file, and how they are used by DSQGEN.

Table 3‑2 Vendor Dialect Files

	DBMS
	DIALECT Setting
	Filename

	Oracle
	oracle
	oracle.tpl

	DB2
	db2
	db2.tpl

	Neteeza
	neteeza
	neteeza.tpl

	SQLServer
	sqlserver
	sqlserver.tpl

	ANSI (default)
	ansi
	ansi.tpl

3.8.2 __LIMITA/__LIMITB/__LIMITC
__LIMITA, __LIMITB and __LIMITC (note the leading double underscore) define a printf-format strings that are used to constrain the number of rows returned by a query. They may include in integer argument substitution (i.e., ‘%d’). When a query template sets a value for _LIMIT (with a single leading underscore) as defined in 3.7, it’s value will be substituted into __LIMITA, __LIMITB and __LIMITC, if there definition in the dialect file is something other than the empty string. The result will be used to replace any the corresponding single-underscore substitutions in the body of the query template.
3.8.3 _BEGIN/_END

The _BEGIN and _END definitions are automatically included at the beginning and end of each query in each stream produced by DSQGEN. They are intended to provide a single location to add syntax employed by a benchmark sponsor in the automation, sequencing and timing of query execution.
4. Control Statements

4.1. Include Syntax

A query template can rely on definitions from other files using the include statement. The semantics for include files are similar to those found in ‘C’; content from the included files in parsed as though it had been added to the current template at the point where the include statement is encountered. The general syntax for an include statement is:

INCLUDE “<path>”;

<path> is a full or relative path to the file to be included. Relative paths are resolved based on the current working directory from which QGEN was launched. The file must exist, or QGEN will return an error.
5. Substitution Usage

5.1. Query fragments

Any statement found in query template file which does not match the syntax of one of the statements discussed above, is assumed to be a query fragment into which substitutions should be spliced to make complete SQL syntax.

There are virtually no constraints on the format of the query fragments except:

· The statement must be terminated by a semi-colon, as with other query template statements;

· Square brackets must occur only in conjunction with a substitution tags.

5.2. Substitution Tag Usage
5.2.1 Syntax
Substitution tags all have the following syntax:

[<id>[<opt-reuse-counter>][.<modifier tag>]]
<id> is an identifier defined in a substitution definition earlier in the template

<opt-reuse-counter> is an optional numeric suffix, used to control value uniqueness

<modifier tag> is an optional tag to one of the multiple values returned by the query modifiers defined in Clause 3.5.

Each substitution tag must use an <id> which is defined in the current query template. Each substitution tag must be surrounded by square brackets in the query fragments – these are used to distinguish substitution points from other parts of the query text.
5.2.2 Substitution Re-use

Each unique substitution tag (i.e., id and numeric suffix, if any) receives a unique value based on the definition associated with the substitution definition. The value is selected once for each use of a query template, and retains that value throughout the query template. This allows a substitution value to be used repeatedly in a query template, as well as allowing a substitution to be used to generate multiple impendent values within a template.

EXAMPLE:
DEFINE color = TEXT({“red”, 10}, {“green”, 10}, {“blue”, 10}, {“white”, 10}));
”A matched pair ([color001], [color001]) and a random pair ([color], [color002])”
The two color references within the first set of parentheses are guaranteed to match; the other pair may not match
5.2.3 RANGE Tags

If a substitution definition includes a RANGE modifier (see Clause 3.5.1), the substitution tag can include a “begin” or “end” suffix, separated from the main body of the tag with a period.

EXAMPLE: [tag7.begin]
return the lower endpoint of the range selected for the 7th use of the substitution named “tag”
5.2.4 LIST Tags

If a substitution definition includes a LIST modifier (see Clause 3.5.2), the substitution tag can include a 1-based, numeric suffix, separated from the main body of the tag with a period.

EXAMPLE: [tag7.3]
return the third member of the list of values selected for the 7th use of the substitution named “tag”
6. Usage Summary
6.1. General Syntax

DSQGEN is a command-line utility that employs standard command line syntax for each target supported platform. Each command line option must be preceded by an appropriate option flag (‘-‘ or ‘/’) and followed by any required arguments. Command line arguments are grouped into two classes, general and advanced, but the group is solely to facilitate understanding and the options may be combined in any way that is useful. The options are summarized in xxx and yyy.
When defined in a parameter file (using -file), options should use the form ‘OPTION [= VALUE]’ with one setting per line. Values are either strings (shown as <s>) or integers (shown as <n>). Flag options do not require a value when set on the command line, and take ‘Y’ or ‘N’ as an argument in a parameter file. Each option can also be set from the command line, using a form of '/param [optional argument]' or ‘-param [optional argument]’. Unique anchored substrings of options are also recognized, and case is ignored, so '/sc' is equivalent to '/SCALE'

Table 6‑1 General Command Line Options

	Option
	Value
	Effect [default]

	file
	<s>
	Read parameters from file <s>.

	verbose
	
	Enable verbose output. [N]

	help
	
	Display a command line usage summary. [N]

	output_dir
	<s>
	Create query streams in directory <s> [./]

	quiet
	
	Suppress all output (for scripting). [N]

	streams
	<n>
	Generate <n> query streams. [1]

	input
	<s>
	Read template names from file <s>, one template per line. Either INPUT or TEMPLATE must be supplied on the command line.

	scale
	<n>
	Assume a database scale of <n> GB [1]

	log
	<s>
	Write parameter settings to log file <s>

	qualify
	
	Generate qualification queries in ascending order. [N]

Table 6‑2 Advanced Command Line Options

	Option
	Value
	Effect

	distributions
	<s>
	Read distributions from file <s>. [tpcds.idx]

	path_sep
	<s>
	Use a path separator of <s>. [UNIX: ‘/’, Windows: ‘\’]

	rngseed
	<n>
	Seed the random number generator with <n> [19620718].

	release
	
	Display DSQGEN release information [N]

	template
	<s>
	Build queries from template <s> ONLY. Either TEMPLATE or INPUT must be supplied on the command line.

	count
	<n>
	Generate <n> versions per stream (used with TEMPLATE)

	debug
	
	Generate minor debugging output

	filter
	
	Write generated queries to stdout

	dialect
	<s>
	Include vendor-specific dialect definitions found in <s>.tpl

	Directory
	<s>
	Look for templates and dialect files in <s> (defaults to “.”)

7. Examples

7.1. Query Template Example #1

Define int_op = text({"min", 50 }, {"max", 50 });

Define integer_col = text({"p_available_qty", 99 },

{"p_backorder_qty", 1});

Define delta = random(1, 10, uniform);

Define first_name = dist(first_names, 1, 1);

Define extra_pred = text(

{"p_size < 5", 50},

{"1 = 1", 50});

select [int_op]([integer_col]) from orders, parts

where o_orderkey between ([delta], [delta] + 10)

and exists (select unique(p_partkey) from lineitem where

o_orderkey = l_orderkey and

p_partkey = l_parkey and

p_name like "[first_name]%")

and [extra_pred];

7.2. Query Template Example #2

-- How many items of brands (list of brands) were bought by

-- customers with certain demographic characteristics

-- (gender and marital status X country) in a given time period

-- from web?

--=-=-=-=-=-=-=

-- Define Substitutions

--=-=-=-=-=-=-=

-- select 5% of sales data

define sales_date = RANGE(DATE("2002-01-01", "2005-12-31", SALES), 5);

-- select brand ids

define brand_id = LIST(RANDOM(1, ROWCOUNT(“item_brands”), UNIFORM), 3);

select CA_COUNTRY, CD_MARITAL_STATUS, CD_GENDER,

 I_BRAND, sum(WS_QUANTITY) sum_quantity

from web_sales, customer_address, customer_demographics,

 dated, item

where ws_item_sk = i_item_sk and

 ws_sold_date_sk = d_date_sk and

 d_date between "[sales_date.begin]" and "[sales_date.end]" and

 WS_BILL_DEMO_SK = CD_DEMO_SK and

 WS_BILL_ADDR_SK = CA_ADDRESS_SK and

 i_brand in ([brand_id])

group by I_BRAND, CA_COUNTRY, CD_MARITAL_STATUS, CD_GENDER;

TPC Confidential

lm: 09-Sep-2008

