Evaluator¶
-
class
pyspark.ml.evaluation.Evaluator[source]¶ Base class for evaluators that compute metrics from predictions.
New in version 1.4.0.
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
evaluate(dataset[, params])Evaluates the output with optional parameters.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False).isSet(param)Checks whether a param is explicitly set by user.
set(param, value)Sets a parameter in the embedded param map.
Attributes
Returns all params ordered by name.
Methods Documentation
-
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy(extra: Optional[ParamMap] = None) → P¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
ParamsCopy of this instance
-
evaluate(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → float[source]¶ Evaluates the output with optional parameters.
New in version 1.4.0.
- Parameters
- dataset
pyspark.sql.DataFrame a dataset that contains labels/observations and predictions
- paramsdict, optional
an optional param map that overrides embedded params
- dataset
- Returns
- float
metric
-
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isLargerBetter() → bool[source]¶ Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
-
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
Attributes Documentation
-
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-