The Definitive Guides

10 the X Window System

Volume Six A

Motif Edition

Motif Programming
Manual

Jjor OSFiMotif Release 1.2

By Dan Heller & Paula M. Ferguson

O"Reilly & Associates, Inc.

Motif Programming Manual

I o (20 7= 1o = NPT
I T I TS o) PR

N W0 1] o) PP

1.3 HOW ThiS BOOK IS OFQANIZEMuuueiuuiiuiiietiiiiiitieiieeetaeteeeteeeeeeseeeeeeesssssseeseeesesesseeeeeeeeeeeeeeseeeeeeeeeeseneeeeeeeeeenees 3
R = P10 Lo Tl U L =Y 15T

1.5 ConVeNtiONSISEAIN TS BOOK ... ccuiee ettt ettt ettt ettt et et e e e e e e et e e e e e e e e e e rearaaeees 6

G 7= 1 0110 1,0 |

1.7 Obtainingthe EXampPlePrOGIAIMS.ottt ss s e e e s e e eeeeeeeeeeeeeees 7
A R I TR

Al Y N | PP |
A T = I I PP PPPPPPP {
A O L L PP PP PPPP |

AT o 0 /1o | 1 PP (

1.7.6 Compilingthe EXamMPIEPIOGIAIMS.viviiiiiiiiiiiiiiee ettt ettt ettt e e e et e e e e e e e e e e e e e e e e aeeaaaaaaeaaaaaens 9
ST A Lo (=0 a1 Y. = 1 TR !

S Ao 011 (=T o 00T =T 1) 1
1.10 WeE' dLIKE 10 HEAIETOM Y OU. .. etiiieeie ettt ettt et et et et et et e e e e e e e e e e e e e e eer e e rennnannns 12

3 The Motif Programming MOGEL..........cooviiiiiiiieeeeee e 21
3.1 BasicX Toolkit TerminologyandCONCEPLSceeteeeeeeeeeee et ee e e e e ee e e e e e e e e e e e e e nsnnsnnssnnsennes 21
3.2 The XM ANAXE LIDEAIIES. .. e e eeeeee ettt ettt ettt et et et et et e et e et e et e et e e e e e e e e e e s e e e e e e reereereanns 23

3.3 Programming/Vith Xt @NAMOLIEcoviiiiiiiiiiii i 24
IR0 M [TV [T (a1 2¢€
3.3.2 Settingthe LangUagEPTOCEAUIE.uuuteiiiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeaeeeaeees 27
3.3.3 Initializing the TOOIKIL.........cceeeeeeeeeee e ennnne 28
3.3.4 CrealiNOWWILOELS. .. uueeeiieiieeiieieeeeeee ettt ettt ettt ettt ettt e et e et et e et e etteeeaeaateaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaeens 30
3.3.5 SettingandGettingWidgEtRESOUICESuuuuuuruereeeiiereeerieereeeeeeeeeeeeeees 32
3.3.6 EventHandlingfor WIQELES.cuiiiiiiiiiiieiieeeeee ettt 37
GG T A N 2 T=] V7= 11 1T o USRS 42

I o101 00T oY ST TRROPP Z

4 OVEIVIEW OF T8 IMOTIT T OOIKIL ... evueeeeeeeeete ettt ettt et et et et et e et ee e e e e e e e e eaee e eaeeaneeteeenneeneees 47

g N I 1= 0 1 S Y =P 4

oA Y o) o) [[o= 1 o] 4 L @e] 011 o] 5 RS URUUSRRR 4t
4.2.1 The Primitive Widget ClasS .. .oo o it i e e e oo e oot e e et senesnnesnnennne 46
A.2.2 GAAGETS. . e eeieeei et —————- 5!

Z G I Y o) o) [To= 1o 1 - Y/ 11 | 5:
4.3.1 TheManageM IdQEICIASS.oviiiii i 54
4.3.2 GEOMEIIMMANAGEIMIENT. ... ettt ceee et ettt e e e e e e e e e et e e e e e e e e aa e e aa e e aa e s an e e sassanssansstnssanssensssnaen 56
eI €=V (o= 1Y F= T = (o T=T 101 LR 57
4.3.4 KeYDOAIAT TAVEISAL ... it iiie ettt s e s e e e e ene e e 58

4.4 PuttingTogethera CompleteAPPIICALION.........ovvviiiiei e 59
o N I A TNV = ALY AT T [Y PP 59

A Y 1= U< 6

Motif Programming Manual

4 Overview of the Motif Toolkit

4.4.3 TheWINAOW MBNAGEN..........ciiiieiieee ettt e aeaaeeas 62
N 1= | oo RS PRR 6
S 1 7= 0 L= 7
N S @] [0 7

ST O 1 = 1 o = £ Y o 1 USSR 7"
4.5.1 GeneralTooIKit CHANGES.cco i e nennnennnennne 76
4.5.2 SpecCifiCWidget CRANOEScco oo naee 78
4.5.3 Changed0 the EXaMPIEPIOQIAMS.uuuuueerieerieeteeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeereereaeeeeees 80

Z GRS TU 1010 AT 0 F SRR UUPPPPTPTTN €

LI I A Y01 =1 T AY AT o [0 T &

Lo RO (Y= LT T = 1Y/ = 1T YA T [A 82

oI I AT V[T A1 1S T 8
5.2.1 Creatinga PUNAOWNIMENU.........ociieiiiiiieeieeee ettt e e e e e e e e 88
5.2.2 SimpIeMenuCaIIbackRoutines .. 90

(oI [10 (8 ToiuTo] TN (o TN D= Lo 1 PSPPSR 10
L0t I Yo W 0T TS <o =1 o 107
6.2 The ANALOMYOF B DIAIOG ittt s e e s sne s e 110
LSRG O (== LT T 1Yo 1 5= | oo 111

6.3.1 DIalogHEAUEIFIIEScoeieeieeeeeeeeeee e 112
ORI A O (== 1 1] Te 7= 1 7= oo PP 112
6.3.3 SEUlINORESOUITES. ... e uttiieeiiittiieteeeieeeteeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaeeeeeeeeeeeees 113
(SRC R D= o Yo 1Y F= 0 F= 1o =T 010 = o | o 114
(ORI O [0 1S 10 o | BT o o S ESRRS 118
RCH T ale) =[P4l aTe BIF=1ToTo @ (=T 1A] o PSR 119
(ORI F= 10T [=TT T o = PP 12
(SN S R W 1SY D<) =10 1 LA =T 0] o 120

6.4.2 Initial KeYDOAIAEOCUS........ccoieieeeeeeee e 122
(SN G H S U] AT 7] 122
(S I = B = (o Yo N = 123
(SR T DI F= |0 To [=TS A 2T SRR 123
Lo LT = | o T 1 0 1 124
6.5 Dialog CallDACKROULINESttt s s s e e e s e e s nnene e 124

6.6 Piercingthe Dialog ADSIIACHION.cooi i 127
6.6.1 CONVENIENCHROULINES ... evueeeeee et et e et e et e et e ettt e e e e e ea e ea e e e e ea e ea e e e ea e e eererenaeeraeenans 127

Motif Programming Manual

AT [t T 0 7= 0T PP 1
A R Y o 1= TS0 S Y= (Yo 1o 1= o T SRS 143
A A=) < o110] 3T 1 oo PSP 14.

7.2.] CallDACKROULINES. ... ccvuiiiei et ee et e e e e e e et e e e e e et e e s s b e e s b e s s sb e e e b e ssaeasba s sennseraasns 148
7.2.2 INterNAIMWIAGETS . ..o e 149
ARG 0011611 = 1[0 1= PP 15
A N Y=Y @] 1 2T = Ve YAYA T [= U 152
A 1 (SIS [=Tod 1 To T 0 = [T R 15¢
7.5.1 Creatinga FileSeleCtioNDIAIOG+ vveeeeiiiiiiiiiei ettt e e e e e e e e eeas 156
7.5.2 INtErNAIMWIAGETS . ..o e 157
7.5.3 CallDACKROULINES. ... ccvuiiiei ettt e e e e e e et e e e e e et e e s s b e e e b s e sb e e s b e ssasasba e ssanserbasns 158
7.5.4 File SEAICHING. ... eeeeieeee ettt e e e e e et e e e e e e e e e e e e e s e e e e e e e e e e a e e e e e e e e ann 158
A OIS TU 101007 o ST PP 1¢
oI O U110 0141 =1 [0 o LSRR 1
o200 1Y/ o o 1Y To TNV o 1 9= oo 1 165
8.1.1 Modifying MESSAQEDIAIOGS. uuuuuuuuuuinuiinuiiutiieteteaeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessnesseseeeeseeeeeeeeneeeees 165
8.1.2 Modifying SeleCtioNDIAIOUSciviiiieiiiieiieii ettt 168
8.2 DESIONINGNEW DIBIOGOS. .. . vtvvvettteeiiettitetieeteeeteeetataeteaataaataaeaaaataaaaaaaaaaaeaaaaaaaaes 172
T N I 15T 1= | 17:
A2 N 1= 1Y/ =TT T (<Y (O 1o PP 173
oI W A 15X L0 011 0] AN (Y- VTN 174
oI A B W A1SY AN 110 A1 AN (Y- 174
LRGN =10 1o [T aTo 1= 5 7= (oY PP 17
TR0 N I 15T 1= | 18:
L TRCTZA T=1 1Y/ =TT (=Y (O 1o PP 184
oS TG I I A 15X L0 0111 0] AN (Y- W TN 185
oI W A 1SY AN 110 A1 AN (Y- 186
8.4 GeneraliZiNANE ACHON ATccoie i e e et e e e nssnnsnnnnsnnennnnnnne 188
8.5 Usinga TopLevelShelfor 8 DIAI0G ccooaeeainieiiieeeaeeeeeeeeee et eeeeeeeeeee e sesaeessesssseseeeeeeeeeeeeeeeeeees 194
RO a0 1S3 1110 11T 0= 0T £ PPP 19¢
LTS 1U 1101007 0 ST 1¢

Lo Y= 0 = o =T AT o [0 = 1¢
9.1 Typesof ManNageMVIAGELScoo e nanane 199
9.2 CreatingManageMWVIdOELS.ccoe oo nnannne 200
9.3 The BUHEtINBOAIAWIAGEL.eeeeeeeieeieeieeeeieee ettt ettt ettt ettt ettt et et e e ettt et et et teeeeaeaaaeaeaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaens 202

L TR TR A =T 01 =N 20:
9.3.2 GeOMEIVMMANAGEIMIEIL.eeeiie ettt ettt e e e e e e et ettt e e e e e e e e e ebbba e e e e e aeeeeebbba e e e aaeeaennnns 203
Lo I Y= o0 AT o o = PP 20
O I I R 0 A1 AN =0] A1) 1T 207
O I A AN 1= (0] A1 A1) A1 @ T 1T 213
9.4.3 POSItIONAACHIIMIEIES. . ..evv ittt e e e et e e e e et e s s b s e saa e s saa s s saa s saaasssbn s sabnsssnnsenens 216
9.4.4 AJAILIONAI RESOUICES.u i iieeniiie e e e et e et e e e et e e e et e e et s e saa s e saa e s sba s saasesansssanasabnsssnnsenens 219
L I ST AN 1T (<0 0] 11T 22C
I S e] a1 aT0]] md (0] 0] 1Y 0 1L 222
9.5 The ROWCOIUMNWIAGET.cc oo e eeeeeee oottt e e e e e e e nssnnsssnssnnennnennnes 224
9.5.1 ROWSANUCOIUIMINIS. ...eueeeteietieitte e et eeett s e et s e et s e saa s s saasesaa e s saa s e s sa s ssba s saa s sssassssnssssssssssnssssnssrens 226
9.5.2 HOMOQENEOUENIIAIEN.ciiiiiiiiiiiiiieeeeeeee ettt e e e e e e e e e e e e e e e e e e 230
LRSI T O 1| 7= 1] 23:

Motif Programming Manual

9 Manager Widgets
LS I I T 7= T o T SRS 23:

9.7 ThePanedWINAOWMVIAGEL.ccoo e nnnnnnes 236
L A R oY1= 00] 1) 1= 111 TP 239

L A AR Y- o] 1T 24

LIRS LY Lo T (o = VL= £ - PSP 24
9.8.1 TUrNINGTraVerSAIOME.........eviiiii e 244

R IS TU 1010 0= o ST 2°F

10 ScrolledWiIiNAOWS AN SCIOIBAIS. ... cu ettt ettt ettt et et et et et e et e e et e e et eerennrennrannrenns 252

10.1 The ScrolledWIindoWDESIGNMOGEL.........uuuuiiiiiiiiiiiiiiiieiieeieeeiae ettt s e eee e e e seeeeeeeeeeeeeeeees 252
10.1.1 The AutomatiCSCrOINNGIMOUEL.uuuuuieeeiiiiiiiieiiiieieeeeeebeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 252
10.1.2 TheApplication—definedScrollingMOEl......... ... eeeeeeeeees 253

10.2 Creatinga SCrOHEAWINGOW.cceee oo e e e e a e e e e e s e nnnnnnne 255
O N () = Lot Yol 0] 1T SRR 255
10.2.2 Application—defiNedSCIOlING.............uuuuureriiiiiieiiiiiieeieeeeeeeeeeeeee e eee e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 256
10.2.3 AQAITIONAI RESOUICES. ... cetueieteeeteeiete e et e e et eea e e et e e saa e seasesaassabasssaa s saaassaassassnnssssnaransseesns 256
10.2.4 An AutomaticScrolledWindoWEXamMPIE........ccooviiiiiiiiiieee e 256

10.3 Working DireCtly With SCIOIBAIS..........uuuuuuueeuuiuuuiiuuitiueeeteeueeeeeneeenneeeeaeseeseeeeeeeeseeseeeeseeeeeeeeeeeeeeeeeeeeeeeeees 260
O R B L0 0 == 262

ORI @ 1<) 01 7= 1 110 A PP PTPT 265
10.3.3 CaAllDACKROULINES.t eeeeee et ettt e et ettt et e e et e e e e e e e et e e e e e e eeaaeeneeen 266

10.4 ImplementingTrue Application—definedScrolling.............coooeeii o 269
10.5 Working With KeyboardTraversain ScrolledWIiNdOWS...........ccovvviiieiieiiieeieeeeeeeeeeeeeeeeeeeeee e 279

L0.6 SUIMIMIAIY e ettt e e e ettt ettt e e e e ettt ettt e oo e e e et et e ettt e oo e e e e et e e et b b oo oo e e e e e ee e eba oo e e e e e ee et e bba e e e eeeeeeetbbb e e eaes 28
QA =] (oI ST PR 2¢€

N AT) = LY7o T == WAV o o = o 28.:
11.1 Creatinga DrawWiNQATEAWWIAGETuuuuuueuueeueeetueeieeeeeeeeaeeaeeeeeeeeaeseeeeeeeeeeeeeeeeeeeeeseseeeeeeeeeeeeeeeeeeeeeeeeeeereeeees 282
11.2 UsingDrawingAreaCallbackFUNCLIONScoiiiiei i e eeeeeeeeeeennne 283
11.2.1 HandlingINPUEEVENES.......cviiiiiiee e 284
11.2.2 RedrawinQa DIaWINGATEA.cee e e e e e e eeee et e e nnnnnnenee 287
11.3 Using Translation®n a DIAWINGATEA.iueeiee e ee e e e e e e e e e e e e e e e e 290
11.4 USINQCOIlOIN @ DIAWINGAIBA........eeiieiiiieeieeeieee ettt ettt ettt e ettt ettt e et aeeeaeeaaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaans 296

TSN 1010 0T o F TSP 3C
ST =] (oI ST TR 3C

2 =Y o T Fo3r= Y Lo I =T o 3C
I N 7= o) 3(

12.1.1 Creatingalabel..........oooi 304

R O) = T £ 305

2 I B P2 1o T2 1o I o= SRR 306

A I = (0T Y= 0T Y71 2SS 308

I = 0T N T 0T 0 SRR 309
12.1.6 Multi=line andMUIti=TONt LADEIS.ccuneeeeeeeeeeee ettt e e e e eeen 310

A U] o] U0 T 31
A N AU 1 a1 =0 (0]« OF= 1 1] o F= Voo 2R 314

Motif Programming Manual

12 Labelsand Buttons

12.2.2 MUltiple BUEON CIICKS. . eviiiiiieieeeee ettt 316
2 o T T | 1= = 1 T U 31
12.3.1 CreatingTOQQIEBULIONS.uuuiueiiiiiiieiiettieeeeeeeiaeeeeeeeeee et eseeeeeeseessessssss e eeessenesneeeneenes 319
12.3.2 TOQQIEBUONRESOUITES.ceviiiiieieiieeieee ettt ettt ettt ettt e et eaaaaaaaens 320
12.3.3 TOQQIEBUONPIXIMADS. ..o et e et et eeeeeee e e e e e e e s e e e e e e e e e e e e e e e s e ssssssssessssnsssnnssnnnnnnes 321
12.3.4 ToggleBUuttoNCAlIDACKS........ovviiiiiieiieiieee e 323
R TSN = Y0 [0 210)= 324
R N O 00 2T 0) (=TT 328
N 0)11V = T U0 1 33
2 ST B L=] =1 11 33
L2.6 SUIMMIAIY ettt e e e e et ettt e e e e e e et ettt oo oo e e et e ettt bt e o oo e e e et e ettt b oo oo e e e e e ee e bbb oo e e e e e eeee s bban e e e e eeeeeeetnbbna e e eaeas 3¢
A =] (11T < 3¢
T I L= IS5 YA o o = 3¢
13.1 CreatiNnQaLiSEWIAOEL.eeiiiiiieieeieieee ettt ettt ettt ettt e ettt ettt et e e et e et e e e e ae et aeaaaeeaaeaaaaaaaaaaaaaaaaaans 342
S 2 8 ST T T od 0] =T 0 | 34!
ST LY = T T o8P AT =11 34¢
S T o [1T 1 TP 347
13.3.2 FINAINGIIEMIS. ..ttt ettt ettt ettt et ettt e et e et e e e et e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaeeaaaans 350
SRS I B =T] = Tt o =T 0 0 R 351
13.3.4 DelliNGIEBIMS....ce e e eeeeeee e - 352
SRS TS 1) =T od T T 1= 110 USSP 353
13.3.6 AN EXAMIPIE. ... ——————— 35E
R 0T 1T 110 11 = S 35¢
13.5 LiSt CallDACKROULIMES. .. .cuuiieueiitieitie et e et e e e e e et e e eaa e s et s e saa s se b s s saa s s saasssaa s sasssssanssanssannssssnssssnnssenns 361
R A I AT B = 10 |1 2o {0 361
13.5.2 BrowseandSingleSelectionCallDacKsS.............cuvviiiiiiiiiiiie e 362
13.5.3 Multiple SelectionCallDACK.ccoieii i eeeennee 364
13.5.4 ExtendedSeleCtioNCaAIIDACK.oveeeiii it e e e s e s e s b e e e e aaa s 365
G OIS TU 1010 0T o F U PTTPPTRTRPPPP 3¢€
T (=] (01T T 3¢
I TS Yoz 1 =AY o o = PP 3¢
O Lo 1T 0= S Yo=Y o Lo = PP 367
S o= | 1SN A= | LU T 37
14.3 ScaleOrientatioNANAIMOVEIMIENL.uuiieeie i i et ee et et e e e e e et e e et eesasseaa s saasssaa s sasssssnsssanssssnsssnnsarees 371
T o7= 1[5 0= | o= Yo 37
RIS or= | (5] o Y. = 37!
OIS TN 1010 AT 0 SRR 37
ST IS AT [T3P 3
15.1 InteractingWith TEXEWVIAQETS uuuuuuuuuununniineieeiiieieettteaeeeeeeeee ettt s e s e e e e eeee e e e eeeeeeeeeees 378
S I A TS =T T T 1 = OSSR 378
ST I S T =T od T | =« 379
ST = Ao [0 T = 72 L o 38!
ST A N TS =) LU =1 D - | = 381
15.2.2 SingleandMUILIPIE LINES.ttt ee e s e e seeneeee e 383
ST IS Yol (0] P2 o] S0 =)« F 384
ST A B Y 0 1T 1110 = 390

Motif Programming Manual
15 Text Widgets

15.2.5 OULPUETONIYTEXE. ...ttt e e e e e e e e e eneeeneeeees 396
15.3 TeXt ClIPDOAIAEUNCEHIONS. .. .ottt e e e e e e e e e e e e e eeeeeees 399
15.3.1 Gettingthe SEIECHON.cce e 403
15.3.2 Modifying the SeleCtioNMECNANISIIIS.u.iivreieiiiieiii e e et e e e et e s e e e st e e ssaeeest e saneens 403
T N = = 1o 40
ST =) OF= 1| o= 41
15.5.1 The ACtiVAtION CaAlIDACKt e e e e e e s e e e s e s e e e sba e s eaaas 412
15.5.2 Text ModificatioN CallDACKS.cccuniiiiiiiee e e e e e e s e s e e st e e s e e e eaaaas 415
15.5.3 The CursorMovemMeNICAIDACKuiiiun i e e e e et e et e e st e s eb e esaaes 423
15.5.4 FOCUSCAIIDACKS ceetieit it e et et et e e et e e e e e et e e e ab e e et e s saa e e st s e san s esba e sansasbnsesensns 425
15.6 TextWidgetInterNatioNaliZAtION..............uueueereieeiieiiieeiieeiaeieees 425
15.6.1 TeXtREPIESENIALION. .. .eviiiiiiiiiieiiie ettt ettt ettt ettt et e e et e e et e et e e e e ea e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaens 425
ST G2 = (X @ 111 1 427
S G T T 1=] o) 427
A TN 101 00T o SO 43
SRR T (=] (01 1T T 4z
G YL TS TN i
N =T LU I LY 0T TS UPPTUPPPTTPR 43
16.2 CreatingSIMPIEIMENUScoo e a e a e e e e e e e s e nnnnnne 434
16.2.0 POPUPIMEINUS. ...ttt ettt e oo e e e ettt bt r oo e e e e e et ae bbb e e e e e et eeetebb e e e e e aaeeeesbbbanaaeeeas 434
G O 1Tt = o [0 (Y= 0P 437
G2 T O] o) 1o 11V =T 0 0 440
GRS B L=t To a1 o AV LT AT YT (= 1.0 442
ST T Y. =T 10 I 1N 444
GG A Y/ =) U L= 0 1 44F
SRR H Y. 1T 01 (o= 44F
SRR N oo <Y [=1 (0] =TT 44¢
GRS ST I 1= (=] 1YY T PP 447
16.3.6 SONSIIVITY . .. eeeeeeeee e e 44¢
SR I A Y=\l © 111 1Y 10 T 450
16.4 GeneraMenuCreatioNTECRNIQUES........ccoeiiie i 452
16.4.1 Building PUIAOWNIMENUS.........cceiiiiiiiiiiiiiiiieee ettt ettt e et e et e aaaaaaaaaaaaaaaaeas 452
16.4.2 Building CasCadiNAVIENUS.cceeeieieeee e nnnnnee 455
16.4.3 BUilding POPUPMENUS. ..o ii e ee e eie e ee e e e e e e s ssssessssnsssnessnnennnes 459
16.4.4 BUldiNG OPLONIMENUS.uuuuutieitietiieiieeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesseesseesssssssssssessssssenssnsseneenes 466
LB.5 SUIMIMIAIY ettt e e ettt ettt e oottt oo oo e e e ettt et bt oo oo e e e et ettt b e oo oo e e e et ettt ba oo e e e e e e e e et bh e e e e e e e eenanbb e e e aas 47
S I =] (01T T 47
17 Interacting With the WINAOW IMBNAGEE.ueieeiiieeieeeeieeeeeeeeee ettt et e et et et e ee et eeetee et e eateaeataeeeateaaataaataaaaaaaaaaaaaaaaaaees 471
R R L (=Y (o [T 1 (O T 10T o710 T 471
AR 1<) 1 TSE Yo 10 (o] = 47
A ST AT | =01 110) 473
A ST 11 | ST 47:
I N T3] 1<) 1T (oo) o TN 477
17.3 VENUOISNEIRESOUICES.uu i iittiiietee it ee e e et e et e e e e e et e e e et e e eaa s e e et s e e aa e s aa s e sta e sas s eabasesansasbaseesnseastnsens 476
17.3.1 WIindow ManagemDECOIAtIONS.cuviiiiiiiiieiiiei ettt e aaaaaaens 479
17.3.2 WINAOW MENUFEUNCLIONS. .. cevvniiieiie it e et e e et e e e e et e s e s s s e s s s s eb e s st s s sb s s s b s sansesanss 481
17.4 HandlingWiNndOW ManNageMMESSA0ES uuuuuuuuuunnunnnnnnnnnnnnnnnnnnnnennneenneeneeeneeesesesesssesssesssesssssssnsssesssnsnees 482

Motif Programming Manual

17 Interacting With the Window Manager

17.4.1 ADding NEeW PIOtOCOIS.ccoiviiieiieieieee e 485
A ST VA e TN o]] o= LT e] I == 486
RS A0 1Y (0] 174 =Y0 md (0] (0o 0] £ 488
A OIS TN 10100 F o SR PPT RSP 4¢
A (=] (01T T 4¢
ST I T4 0 oY 7= o PP 4
18.1 SimpleClipboardCopyandREtrEVAL.........ccciiiiiieeeeee e 494
S I o] Y/ o - SRR 497
S I =1 =LY T L= PP 498
18.1.3 Queryingthe Clipboardfor DataSize..........ccooeeiieei e 501
S 2 o] 6174 0 120 =121 50
SRRSO [To] oo =T o |- =Y o] 1= L PP 507
18.4 ThePrimarySelectionandthe ClIPDOAIH............uuuuiuiiiiiiiiiiiiiiiiiiiieiie e ee e eeeeeeeeeeeeees 508
18.4.1 ClipboardFunctionSWith TeXtWIAQELS.........uuuuuuuuuuiiniiiiiiiieiinieeieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 509
18.4.2 The OWNEIOf the SEIECHIONN.uuiieee i ie e e e e e e s s e s e e s eaa s e sab s s eaa e sanseeens 510
18.5 IMPIEMENTATIOMSSUBSeeeeeeeeeeieieeeeieeeeeee ettt ettt et et ettt eee e ettt ittt eettettt et te ettt e et et taattaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaees 511
D80 SUIMIMIAIY ettt e e e ettt ettt e e oo e ettt ettt e e oo e e e ettt ettt e o oo e e e et e e tt b b oo oo e e e e e et e eb b oo e e e e e e e et bbb e e e e e e e eeernbb e e eaaas 51
LS 7= To 1= 1 o 5 (0 o PP 5:
LS I ST T 1) 7= o =Y o 5 (0 o 51s
S N =) = Vo = VaTe | BT 0] o 1Y oo = PP 515
S A I 1= 7= (o 1T 11 oSSR 516
S N 1=) 0] ¢ 1S (= USRS 518
19.2.3 THEDIAGICON....cc i 519
S A (0] (0o 0] 52’
19.2.5 TheProgramminNGVIOEL..........coooeiiieie e enne 522
19.3 CustomizingBuilt=in DragandDIOP.ueuieiiiieiiiiiiieieieeiete ettt e et e et e e et aaens 524
19.3.1 Specifyingthe DragProtOCQl..........covviiiiiiiiie e 525
19.3.2 Turning Off DragandDrop FUNCHONAIILY..........cceeieeeeeeeeeeeee e 527
19.3.3 Modifying the ViSUaI EffECISvviiiiiiiee e 528
19.4 WOIKINQ With DIAQ SOUICESuuuuuuuutiuuiuutiuttttueetteeeeaeeeeseeeeseesseesseessessesssseeseeesesesseesseeseseeeeseeeeeeeeeeeeeereeees 529
19.4.1 CreatinQga Drag SOUICE.ii i ittt e e e oot e ee e e e e e et e e e e e e snessnnsennssnsssnessnnennnes 536
S S = L 1o 11 1= I = (o USSP 537
19.4.3 CONVEIINAINEDALA.evieeiiiiiiiiiiiieeeee ettt e aaaaaaaaaaens 538
19.4.4 Modifying an EXiSting DIag SOUICE......cccoiii i 539
19.4.5 ProvidingCustomDIrag—0VeNViSUALS.............coeiieeiiiei oo 542
S GO (Y= Va1 T [o 544
19.5 WOrKIiNG With DO SItES. ... eeeieee ittt e e s e e e e e e e e e eeeeneeeees 545
19.5.1 CreatiNQgaDIOD SIE .. . eeeieeeiieeeee ettt ettt e ettt e et e et e aaaaaaaaaaaaaaaans 552
19.5.2 Modifying an EXiSINGDIOD SIEE.......evviieiiiiiiiiiiiiiiee ettt ettt a e e e e e e e e e e e e e e e aaaaaaaeas 553
SRS = Ta o [T aTe 11 0T o o U 554
19.5.4 PrOVIAINGHEI D ..ottt e s s e e e e e e ee e 556
19.5.5 ProvidingCustomDrag—uUnNdeMNIiSUAIS..............oveiiiiiiiiiiiieee e 560
D19.6 SUIMIMIAIY ettt e e e e et ettt oo e e ettt ettt e e oo e e e e e ettt bt oo oo e e e et e e ttba oo oo e e e et et b bbb oo e e e e e ee e et bban e e e aeaeeeeenbbn e e eaeas 5¢€
b2 I @ /01 0o 18 1 T0 1S 1T T 5¢€
20.1 InternatioNaliZe@ EXEOULDULcvviiiiiiiiiee et eee ettt ettt ettt e e et e et e e e e e e e e e e e e e e e e aeaeaaeaaaaaaaaaaaaaaaaaaaaens 563
20.2 CreatingCOMPOUNASIIINGS ... i i e e et 564

Motif Programming Manual

20 Compound Strings
20.2.1 The SIMPIBCASE. ...ci i i et 564
PO I A o 1 1= = (o SRR 566
20.2.3 COMPOUNASEING SEOMIENLS.iiiiiiiiiiiaiiieeiaeteeaeeaeeeaeeeeeeebeeeeeeeeeeeeeseseesseessssssssssessnsssneseeeeees 570
20.2.4 MURIPIE=TONE SEHNGS .. e e e 573
PAORCT\ViF=TalT o101 F=TuTaTo [@FoT 0] 0o 18T 0 Te S 1T T0 S S PR 575
20.3.1 CoOMPOUNASEHNGFUNCHONSttt e s sssseesseessneseeeeees 575
20.3.2 CompoundStHNGRELHEVAL........cooo e 577
20.3.3 ComMpPOoUNASIHNG CONVEISIONiiiiiee i e eee e senessnesseesssesneesneennnes 577
20.4 WOIKIiNGWIth FONELISTSeeeeiiiieiiiiiieiiiieiiee ettt ettt ettt ettt ettt e et e et e e et e e e e aeaeaeeaaaeaaeaaaaaaaaaaaaaaaaaaaaaens 579
20.4.1 CreatiNngEONTLISIS. . .cii it 579
20.4.2 RetrieVINGEONTLISTS. ...cco e i 583
20.4.3 QUEIYINGFEONTLISES ittt ee s e s e e e s e e e e e e e e e e e e eeeeeeeeeeeeees 583
AR R{=Tale (=TT Te ©feTn0] o o181 ale S 11T Te SRS 584
206 SUMIMIAIY c ..ttt ee ettt oo e e e et ettb b oo e e e et e et tba oo oo e e e e ettt bbaa oo e e e ee e e et e bt oo e e e e e e e eetebb e e e e e e e eeeebbbannaaaeaeeeaenes 5¢€

21.1 HandlingSigNAISIN XIHD. ...ttt n e e e s e e e e e 588
21.2 HANAIINGSIONAISIN XLtttttttettteeiietteeetieeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetaaeeteateaaaeeaeeaaaeaaaaaaaaaaaaaaaaaaaaas 59C
A G T == V0 11 o] RS 59
A N o [o [To) =Y ESTo U 59

A ST U 11010 F= L F PP SUPPPPRRPPN 5¢

AR Ao \V2=YaTot=To I DIF= 1o Yol ad feTo = 0 0] 01011 0T U 599
A Rl 1| 11 (=113 59
22.1.1 MURIZIEVEIHEID. ..o s 603

22.1.2 ContexXt=SeNSItIVEICID.coee e 606
A A AT Lo 1T o = oo SRR 60
22.2.1 USINGWOIK PrOCEAUIES ittt se s e e e e e e 609

A A AL 1= 1 1 o I T 110 T= 613

22.2.3 PrOCESSINAEVENLSuuuuuiiiitiiititieteieeeeeeteeeeeeeeeeeeeeseseeesssseseeesssessee s s e e see e seeeeeeeseeseeeeeeeeeeeeeeeeeeeeeees 613

22.2.4 UpdatinQtie DISPIAY......cce e e eeeeeeeeeee e ————- 619

22.2.5 AVOIAING FOIKS. ... ittt e e e e e e e e e e e e e e e eneeeees 620

22.3 DyNnamicMesSageSyYMDOIScoooi i 622
A SN 1101 1 F= L0 F ST TSUPPPPRRPPN 62

oG I 1) oo 8 [Ta) o N (o 1 0 1 PR 62
23.1 OVEIVIEWOT UIL ANAMIIL et ettt e et et et e e et e et e et e et e e e e et e e e e e e e s e e e e e e re e e eenreenrenns 628

A 700 00 L O L= T o 18 1=V a1 0 PP 628
23.1.2 AdvantagesndDisadvantagesf UlLcooiiiiiiiiiiiiie e 629
2 T 1 1< 6.
23.3 DescribinganInterfaCeWith UIL...........oooe oo 631
23.3.1 StartingandENdiNgaMOAUIE.coioiieii oo nne e e nrennee 633
23.3.2 SpecifyingModule—WIidEOPHIONS.cceee i 635
A TG TR I 1o [0 o T ol =T 636
ARG 3 Ao [0 |1 To K @] a1 4= 01 636
23.3.5 Overviewof UIL LanQUAQESYNTAXuuuiiiiiieiiiieiieeiieeeeeeieeeeee e et e et e e e e e aaeaaeeaaaaaaaaaaaaaaaaaaaaaaaaens 636
23.3.6 SectioNDf AUIL IMOAUIE........u.iieeieie it e et e e e s s e s e s s s b s e saa s s sba e saneranns 638
23.4 CompilingtheUIL MOAUIE........cooo e 640
23.5 Structureof anMrm APPBHCALION.uuiiiiiiiiiiiiiiei ettt eeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 640

Motif Programming Manual

23 Introduction to UIL

23.5.1 Initializing the APPHCALION.ceviieiieeiieee e 643
23.5.2 Creatingtne INtEITACE. ... 646
23.5.3 Displayingthe INTEIACE. ... oottt e e e e e e eees 647
23,0 SUMMTIAIY c ..ot ee et ettt e e e et e et eat bt oo e e e e e e e eeetta oo oo e e e e e et e bbaa oo e e e e e ee et e hb oo e e e e e e e et tab b eeeeeaeeeeebbbaneeeeaaeenraes 64
24 UsSINGLhE UIL COMPIIBI. ... iiiiiieeeeeeeeeeeee e 64
2t R @ 1101 01 =T] 0T 0T RSP 64
Nt St O U 1o 11 64¢
S A 1o 8 e 1Y =1 TR 649
P G €= T =T = (< 31111 0o PP 650
I ST oo [65(
P RS T N o] o] (S V= T 11T L 651
P Y= T T T S 4T o PP 651
24.1.7 USEWML DESCIIPLIONeeteiiiieiieeeeeeeieeeeee ettt ettt et e et et et et e e e e e e e e e eaeaaaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeanns 651
24.2 Errors,Warnings.andInformationalMEeSSaAQES.........cvveiieeiieeieeeeee e 651
24.2.1 SEVEIEEITON IMESSAES. c.vvttuueeeeeteeittttu e e e eeeeeetttia e e e e e eeeeaetba e a e e e eaeeeeababb e e eeeeaeesnbbnnnaaeeaeas 651
24.2.2 ReQUIAIEITON MBS SAOES. .. it ieee ittt s e s s seeeee e e e 651
24.2.3 WAININGMESSAUES.cetiieiiieiieeei ittt ettt ettt e e e et e aaaaaeaaaaaaaeaananns 652
24.2.4 INfOrmMatioNAlIMESSAGES. .. oo e eeee ettt st e e e s e e e e e e e e 653
P G RSN 11010 F= L0 F TR SUPPPPRRPPN 65
25 Creating aUserInterface WiIth UILoooviiiiiiiii e 655
AT A=Y Lo T Ot V] o =S 655
25.2 Defining andCreatiNOVVIAGELS.ueeeeieeieeeeeeiiee ettt ettt ettt ettt ettt et e et ettt e e et e et e eeeeaeeaaaeaaaeaaaaaaaaaaaaaaaaaaaans 658
25.2.1 SpecifyingWidget ARIBULES.coooieiieeeee e 659
25.2.2 SharingWidgetsAMONGMOAUIESccoiiiiii e 665
25.2.3 TheWidget CreatiONPIOCESS.uuviiiiiiiiieeieeee ettt ettt ettt et e e et e e et e e e e e e e e e e e aaeaaaaaaaaaaaaaaaaaaaaaaaaaens 667
25.3 Defining andFetChiNQVAIUES.cooo i nnnnnnnnne 670
25.3.1 SharingValuesBetweenMOUIES...........coooiiiiiii e 670
ARG I A = (ol 01110 Y= 18T PP 671
25.3.3 NUMEIICVAIUES. .. .ceeu et eit et e ettt et e et e et e e et e et e s e e s s et e e s aa s s sba e s saa s s aba s s ssasssbnsssbnsasennsaenn 674
AR I B =) e (=1 =1 (=)0 V= L0 676
S TRC TS O o] o] = 68:
A TG T e 10T 0= SRR 68t
A TG T A AV o o =] O F= TS =S 690
25.3.8 KBY SYIMIS. ..ottt ettt oo oottt e e oo oo e et ettt e e oo e e et e e et bbb e e e e e et et e eab b e e e e e aeeeernaaa s 69(
ARG I N =Y 13 P2 10 A1 =Y o (= 691
25.4 WOrking With CallD@CKS.ttt e s e snesnnene e 691
25,5 LS NG LSS i iieiee e 69
25.6 EXportingAPPHCAtIONDALA.ceeeeeeeeeee e e 696
25.6.1 DeclaringldentifierSin ULLooooiiiiiiiii oo eeesneennees 696
25.6.2 ExportingldentifiersFrom ApplicatioN COUE.uuuruurrireeiiiiieeiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 696
AT AN 11010 7= F PP SSUPPPPTRTPN 6¢
26 Building an Application WIth UILcoooiiiiiii oo e e e e eesnnssnnssnesnnnennee 699
26.1 DefiNiNgtNE USEIINIEITACE. .. . uteiiieiiieiieeiee ettt ettt ettt et e ettt e e e e e e e e e et e e aeeaeaaaaaaaaaaaaaaaaaaaaaens 699
26.1.1 TheMain ApPlCatiONWINAOW.cciiiiiiiiiiie et 700
DT A I 1= 1Y =T 1T IS = 0 PP 703
26.1.3 DIAl0G BOXES . .. i e e eeeeee et nnnrnne 706

Motif Programming Manual

26 Building an Application With UIL

26.2 Creatingthe APPIICATION.ttt e et e et e ettt st s sttt st e st n st s s s e e s s e s s nne e e e 708
B2 200 AT o [0 = o 714
A I L O - ||| =Y od < 71°
P TG T I 1= =t () o = oo 715
A G ST N 1100 T F PP SUPPPPRRPPTN 71
AT o \Vz=aTot=To 181 1l oo = T a1 10107 USRS 717
27.1 USINGNON=MOUTE WIGEES. ...ttt ettt ettt e ettt et et et e e e e e e e e e e e e e aaeaaaeaaaaaaaaaaaaaaaaaaaaens 717
27.1.1 TheWidgetCreatioNPIOCEAULE..............iviiiee et 717
27.1.2 WiIdgEetINCIUAERIIES.ceeeeeiieeieee ettt 720
27.1.3 CreatingUser—definedNVIddetS.ooviiiiiiiiiiie e 721
27.2 OrganizinQUIL IMOAUIBScevieiiieiieiiiiee ettt ettt ettt e et e ettt e e ettt e e e e e e e aeeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 724
27.2.1 USING SEPAratBAOUUIES.uuuueeieuiiiiiiitieiiieeeeeeeeeeeeseeeeeeeeeeeseseseeseseseeesseesseseaseseeeeeeeseeeeeeeeeeeenes 725
27.2.2 OrganizingWithin @MOAUIE............oeiiiiiiiiiieeiieee e 725
27.2.3 SupportindnternationaliZation.................ueieeiiiiiii e 725
27.2.4 OrganizingWith INCIUAERIIES.coo it eeeeneennee 727
27.2.5 CreatingReusablECOMPONENIS..........oviiiiiiiie e 727
27.3 SPECITVINGRESOUICE/AIUES.o it e e snssnnsssnssnnnsnne 728
27.3.1 ResourceNameCRECKING.........coiiii it enne e e e 728
27.3.2 ReSOUICETYPECNECKINGiiiiieiieieeee ettt 728
27.3.3 RESOUICE YPE SUPDPOLT. ... ceeeettitii e e ettt ettt e e e e e e e ettt bt e e e e e e e e e eestbb e e e e e aeeeeesrennnns 729
27.3.4 CallbackSPeCifiCAtiONSciieeieee e 729
27.3.5 WildCard SPECITICALION.evvieiiiiiiiii ettt 729
RN 8 oY= O U] (0] 12174 1110 | o 730
ARGl Vi o=V 11 Tod O oo F= Y 1] T 730
27.3.8 Guidelinesor SettiNgRESOUICES.uuuuuueiiueiiuiiiiiiuetineeeeeeeeeeeaaeeeeeeaeeneeeeaeeeeeeeseeseeeeeeseeeeeeneees 730
27.4 USINQLISES EffECHVEIV....ceveiiiiiiiieieeeeeee e 731
27.4.1 SpecCifViNgCOMMONRESOUITES.uuuiietnieertieeeieeete e et e sst s e st e saaessaassaarssb s et sssrsesbaaesannss 731
A A (=T N IS o @] 2] 0T =] (< 732
27.5 Prototypingan InterfaC@WIth UILL........cccoooiii ettt e e e e e e e e eeeeeeees 736
AT T Y= V= Vo T T YA T [T 736
AT A =T X1 e VAT o o = P 738
A TSN 11010 T F PP TSUPPPPTRTPN 74
28 Additional EXAMPIE PrOGIAIMIS. .. .cceieiiieieeeeeee e ee s e eee e eee e esaeesae et s et e et s st s s s e s e s s s s e s s e e s eeeee e 742
A S T N =l 1Y (oF= 1 (0 [1 (=Y =X ot <10 Y/ = | T 742
PR T A N =11 100 F= T o] B 1S] = VA 1SR 750
ARG I NV =] 12 Te X OF= 1 1Y T F= T 75

1 Preface

By convention, a preface describes the book itself, while the introduction describes the subject matter. You sho
read through the preface to get an idea of how the book is organized, the conventions it follows, and so on.

This book describes how to write applications using the Matif toolkit from the Open Software Foundation (OSF). Tf
Motif toolkit is based on the X Toolkit Intrinsics (Xt), which is the standard mechanism on which many of the toolKits
written for the X Window System are based. Xt provides a library of user—interface objects called widgets ar
gadgets, which provide a convenient interface for creating and manipulating X windows, colormaps, events, and ot
cosmetic attributes of the display. In short, widgets can be thought of as building blocks that the programmer use:
construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user—interface policy whatsoever. The
the job of a user—interface toolkit such as Motif. Motif provides a complete set of widgets designed to implement tl
application look and feel specified in the Motif Style Guide and the Motif Application Environment Specification.

The book provides a complete programmer's guide to the Motif toolkit. While the OSF/Motif toolkit is based on Xt
the focus of the book is on Motif itself, not on the Intrinsics. Detailed information about Xt is provided by
Volume Four, X Toolkit Intrinsics Programming Manual, and references are made to that volume throughout th
course of this book. You are not required to have Volume Four in order to use this book effectively, as the books:
not companion volumes, but complementary ones. However, truly robust applications require a depth of knowled
about Xt and Xlib, the layer on which Xt itself is based, that is not addressed in this book alone. We never leave y
completely in the dark about Xt or Xlib functions that we use or reference, but you won't learn everything there is
know about them through this particular volume.

This book covers Motif 1.2, which is the latest major release of the Motif toolkit. Motif 1.2 is based on Release 5 «
the Xlib and Xt specifications (X11R5). This release of Motif provides many new features, as well as a number
enhancements to existing functionality. All of the changes in Motif 1.2 are summarized in Section #smotifl2, whic
provides references to other sections that describe the changes in more detail.

1.1 The Plot

There are several plots and subplots in this book and the stories told are intertwined. Our primary goal is to help
learn about the Motif environment from both the programmer's and the user's perspectives. However, we are talkin
you as a programmer, not as a user. We treat the user as a third party who is not with us now. In order to creat
application for the user, you sometimes have to assume her role, so at times we may ask you to play such a ro
help you think about things from the user's perspective rather than the programmer's.

Each chapter begins by discussing the goals that Motif is trying to achieve using a particular widget or gadget. |
example, before we describe how to create a FileSelectionDialog, we introduce the object visually and conceptua
discuss its features and drawbacks, and put you in the role of the user. Once you understand what the user is wol
with, you should have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend the graphical user interface (GUI)
are common to all programs that interact with users. You could even interpret this book as a programmer's guide
happens to use Motif as an example. As you read the material, you should stop and think about how you mi
approach a particular interface method if you were using another toolkit instead of Motif. A wild concept, perhaps, b
this approach is the key to better application design and to toolkit independence. If Motif changes in a later release

1

1 Preface 1.2 Assumptions

if you decide to port your application to another toolkit or even another windowing system, the more generalized yc
code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing you with examples of goc
programming habits, styles, and usages, we hope to propagate a programming methodology that has proven t
successful over the years. These techniques have been applied to applications that have been ported to mul
architectures and operating systems. As an added bonus, we have thrown in a humber of interesting programn
tricks. No, these are not hacks, but conveniences that are particular to C, to UNIX, or even to the X Window Syste
We don't focus on these things, but they are made available to you in passing, so you should have no prob
identifying them when they come up.

This book is intended to be used as a programmer's manual, not a reference manual. Volume Six B, Motif Refere
Manual, contains reference material for all of the Motif library functions and widget classes. We have tried to identif
those features of the toolkit that are most important for general discussion, so we do not discuss every aspect o
Motif toolkit in the body of this book.

Any major software development effort, especially in its early stages, has bugs that prevent certain features fr
being used and the Motif toolkit is no exception. There are some bugs in the Motif toolkit that have not yet bee
worked out, but this does not imply that the toolkit is poorly written or riddled with errors. Throughout the book, we
try to alert you to any potential problems you may encounter due to bugs. In some cases, there are things that wo
Motif, but they are poorly designed, and we don't recommend that you use them. Again, we provide an explanatior
what's going on and sometimes describe an alternative solution. There are also some features, resources, and fun
available in the toolkit that are not supported by OSF. OSF reserves the right to change anything not public
documented, so rather than discuss undocumented features, we simply ignore them.

We should also point out that this book is not intended to solve all your problems or answer all your questiol
concerning Motif or its toolkit. It is not going to spoon feed you by giving you step-by-step instructions on how t
achieve a particular task. You are encouraged, and even expected, to experiment on your own with the exan
applications or, better yet, with your own programs. We want to provide you with discussion and examples th
provoke you into asking questions like, "What would happen if | changed this program to do this?" It would b
unrealistic to believe that we could address every problem that might come up. Rather than approaching situati
using overly specific examples, we discuss them in a generalized way that should be applicable to many differ
scenarios.

1.2 Assumptions

The basic method for creating simple applications in Motif is conceptually simple and straightforward. Even if yo
only dabble in C, you can probably understand the concepts well enough to do most things. However, unless you t
a strong handle on the C programming language, there is an upper limit to what you will be able to do when you try
create a full-featured, functioning application. After all, the user—interface portion of most applications should mal
up no more than 30-40% of the total code. The functionality of an application is up to you and is not discussed he
Without a strong background with C, or some other structured programming language, you might have a probile
keeping up with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of the X Toolkit Intrinsics, which ¢
presented in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, and Volume Five, X Toolkit
Intrinsics Reference Manual. A basic understanding of the X Window System is also useful. For some advanc
topics, the reader may need to consult Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference
Manual.

1 Preface 1.3 How This Book Is Organized

1.3 How This Book Is Organized

While this book attempts to serve the widest possible audience, that does not imply that the material is so simple
it is only useful to novice programmers. In fact, this book can be considered an advanced programmer's handbc
since in many places, it assumes a fairly sophisticated knowledge of many features of the X Window System.

Each chapter is organized so that it gets more demanding as you read through it. Each chapter begins with a s
introduction to the particular Motif element that is the subject of the chapter. The basic mechanics involved in creati
and manipulating the object are addressed next, followed by the resources and other configurable aspects of the ol
If there is any advanced material about the object, it is presented at the end of the chapter. Many chapters also inc
exercises that suggest how the material can be adapted for uses not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected that you do so. As you will sc
discover, there are many circular dependencies that justify skipping around between chapters. Since there i
organization that would eliminate this problem, the material is not organized so that you "learn as you go." Instead,
organized the material in a top—down manner, starting with several chapters that provide an introduction to the Mc
look and feel, followed by chapters organized on a widget—-by-widget basis. The higher-level manager widgets :
discussed first, followed by the primitive widgets and gadgets. Advanced material is positioned at the end of the bo
since the details are not of paramount importance to the earlier material. The last four chaapters are devoted to UIL

In short, everything is used everywhere. Starting at the beginning, however, means that we won't necessarily ass
you know about the material that is referenced in later chapters. On the other hand, the later chapters may make
assumption that you are aware of material in earlier chapters.

The book is broken down into twenty six chapters and one appendix as follows:

Chapter 1
Introduction to Motif answers the question "Why Motif?" and suggests some of the complexities that the
programmer has to master in order to make an application easy to use.

Chapter 2
The Motif Programming Model teaches the fundamentals of Motif by example. It presents a simple "Hello,
World" program that shows the structure and style common to all Motif programs. Much of this material is
already covered in detail in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, so the
chapter can be read as a refresher, or a light introduction for those who haven't read the earlier book. The
chapter references Volume Four and Volume One, Xlib Programming Manual, to point out areas that the
programmer needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkit explains what is involved in creating a real application. The chapter discusses
the arrangement of primitive widgets in an interface, the use of dialog boxes and menus, and the relationshi
between an application and the window manager. The chapter also describes all of the changes in Release
of the Motif toolkit. After reading this chapter, the programmer should have a solid overview of Motif
application programming and be able to read the remaining chapters in any order.

Chapter 4
The Main Window describes the Motif MainWindow widget, which can be used to frame many types of
applications. The MainWindow is a manager widget that provides a MenuBar, a scrollable work area, and
various other optional display and control areas.

Chapter 5
Introduction to Dialogs describes the fundamental concepts that underly all Motif dialogs. It provides a
foundation for the more advanced material in the following chapters. In the course of the introduction, this
chapter also provides details on Motif's predefined MessageDialog classes.

1 Preface 1.3 How This Book Is Organized

Chapter 6
Selection Dialogs presents the more complex Motif-supplied dialogs for displaying selectable items, such a:
lists of files or commands, to the user.

Chapter 7
Custom Dialogs describes how to create new dialog types, either by customizing Motif dialogs or by creating
entirely new dialogs.

Chapter 8
Manager Widgets provides detailed descriptions of the various classes of Motif manager widgets. Useful
examples explore the various methods of positioning components in Form and RowColumn widgets.

Chapter 9
ScrolledWindows and ScrollBars describes the ins and outs of scrolling, with particular attention to
application—defined scrolling, which is often required when the simple scrolling provided by the
ScrolledWindow widget is insufficient.

Chapter 10
The DrawingArea Widget describes the Motif DrawingArea widget, which provides a canvas for interactive
drawing. The chapter simply highlights, with numerous code examples, the difficulties that may be
encountered when working with this widget, rather than trying to teach Xlib drawing techniques. Some
knowledge of Xlib is assumed; we direct the reader to Volume One, Xlib Programming Manual, for
additional information.

Chapter 11
Labels and Buttons provides an in—depth look at labels and buttons, the most commonly—-used primitive
widgets. The chapter discusses the Label, PushButton, ToggleButton, ArrowButton, and DrawnButton widge
classes.

Chapter 12
The List Widget describes yet another method for the user to exert control over an application. A List widget
displays a group of items from which the user can make a selection.

Chapter 13
The Scale Widget describes how to use the Scale to display a range of values.

Chapter 14
Text Widgets explains how the Text and TextField widgets can be used to provide text entry in an applicatio
from a single data—entry field to a full-fledged text editor. Special attention is paid to problems such as how
to mask or convert data input by the user so as to control its format. The chapter also discusses the
internationalization features of the widgets provided in Motif 1.2.

Chapter 15
Menus describes the menus provided by the Motif toolkit. The chapter examines how menus are created an
presents some generalized menu creation routines.

Chapter 16
Interacting With the Window Manager provides additional information on the relationship between an
application and the Motif Window Manager (mwm). It discusses the shell widget resources and window
manager protocols that can be used to communicate with the window manager.

Chapter 17
The Clipboard describes a way for the application to interact with other applications. Data is placed on the
clipboard, where it can be accessed by other windows on the desktop, regardless of the applications with
which they are associated.

Chapter 18
Drag and Drop presents the drag and drop mechanism for transferring data that is provided in Motif 1.2. The
chapter describes the built-in drag and drop features of the Motif toolkit and provides examples of adding
drag and drop functionality to an application.

Chapter 19

1 Preface 1.4 Related Documents

Compound Strings describes Motif's technology for encoding font and directional information in the strings
that are used by almost all Motif widgets. It discusses how to use compound strings in an internationalized
application.

Chapter 20
Signal Handling presents the problems that can be encountered when mixing UNIX signals with X
applications. It explains how signals work and why they can wreak such havoc with X, and suggests
workarounds that can help you to minimize the damage.

Chapter 21
Advanced Dialog Programming describes the issues involved in creating multi-stage help systems, using
WorkingDialogs that allow the user to interrupt long—running tasks, and dynamically changing the pixmaps
displayed in a dialog.

Chapter 22
Introduction to UIL introduces Motif's User Interface Language (UIL) and the Motif Resource Manager
(Mrm). It presents a "Hello, World" program that shows the basic structure of an application that uses UIL
and Mrm.

Chapter 23
Using the UIL Compiler describes how to use the UIL compiler.

Chapter 24
Creating a User Interface With UIL presents details about the syntax and usage of UIL, as well as the variol
Mrm functions that are associated with the different UIL constructs.

Chapter 25
Building an Application With UIL describes how the various components of UIL and Mrm come together in a
real application by presenting a text—editor program.

Chapter 26
Advanced UIL Programming describes some advanced UIL programming techniques that can make it easie
to use UIL to prototype a user interface.

Appendix
Additional Example Programs provides several additional examples that illustrate techniques not discussed
the body of the book.

1.4 Related Documents
The following books on the X Window System are available from O'Reilly & Associates:

Volume Zero
X Protocol Reference Manual
Volume One
Xlib Programming Manual
Volume Two
Xlib Reference Manual
Volume Three
X Window System User's Guide, Motif Edition
Volume Four
X Toolkit Intrinsics Programming Manual, Motif Edition
Volume Five
X Toolkit Intrinsics Reference Manual
Volume Six B
Motif Reference Manual
Volume Seven
XView Programming Manual (with accompanying reference volume)

1 Preface 1.5 Conventions Used in This Book

Volume Eight
X Window System Administrator's Guide
PHIGS Programming Manual
PHIGS Reference Manual
PEXIib Programming Manual
PEXIib Reference Manual
Quick Reference
The X Window System in a Nutshell

1.5 Conventions Used in This Book

Italic is used for:

* UNIX pathnames, filenames, program names, user command names, options for user commands, and variz
expressions in syntax sections.
* New terms where they are defined.

Typewriter Font is used for:

» Anything that would be typed verbatim into code, such as examples of source code and text on the screen.

« Variables, data structures (and fields), symbols (defined constants and bit flags), functions, macros, and a
general assortment of anything relating to the C programming language.

« All functions relating to Motif, Xt, and Xlib.

» Names of subroutines in example programs.

Italic Typewriter Font is used for:

» Arguments to functions, since they could be typed in code as shown but are arbitrary names that could be
changed.

Boldface is used for:

* Names of buttons and menus.

1.6 Obtaining Motif

If your hardware vendor is an OSF member, they may be able to provide Motif binaries for your machine. Variot
independent vendors also provide binaries for some machines. Source licenses must be obtained directly from OSF

OSF Direct

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
USA

+1 617 621-7300

Internet: direct@osf.org

1 Preface 1.7 Obtaining the Example Programs

1.7 Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by FTP, FTPMAIL, BITFTF
and UUCP. The cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one
works for you is probably the best. Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on th
Internet but can send and receive electronic mail to internet sites (this includes CompuServe users). Use BITFT
you send electronic mail via BITNET. Use UUCP if none of the above works.

Versions of the example programs for both Motif 1.2 and Motif 1.1 are available electronically. If you want the Moti
1.2 version, use the filename examplesl2.tar.Z, as shown in the sample sessions below. The filename for the Maoti
version is examplesll.tar.Z.

1.7.1 FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you sh
type in boldface.

% ftp ftp.uu.net

Connected to ftp.uu.net.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.uu.net:paula): anonymous

331 Guest login ok, send domain style e-mail address as password.
Password: paula@ora.com (use your user name and host here)
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/xbook/motif

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.

ftp> get examplesl2.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for examples12.tar.Z.
226 Transfer complete.

ftp> quit

221 Goodbye.

%

If the file is a compressed tar archive, extract the files from the archive by typing:
% zcat examplesl2.tar.Z | tar xf —

System V systems require the following tar command instead:
% zcat examplesl2.tar.Z | tar xof —

If zcat is not available on your system, use separate uncompress and tar commands.

1.7.2 FTPMAIL

FTPMAIL is a mail server available to anyone who can send electronic mail to and receive it from Internet sites. Tt
includes any company or service provider that allows email connections to the Internet. Here's how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you want to run. The set
will run anonymous FTP for you and mail the files back to you. To get a complete help file, send a message with

1 Preface 1.7.3 BITFTP

subject and the single word "help" in the body. The following is an example mail session that should get you t
examples. This command sends you a listing of the files in the selected directory, and the requested example files.
listing is useful if there's a later version of the examples you're interested in.

% mail ftpmail@online.ora.com

Subject:

reply—to paula@ora.com Where you want files mailed
open

cd /published/oreilly/xbook/motif

dir

mode binary

uuencode

get examplesl2.tar.Z

quit

A signature at the end of the message is acceptable as long as it appears after "quit."

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the mail headers anc
concatenate them into one file, and then uudecode or atob it. Once you've got the desired file, follow the directic
under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, atob, uncompress, and tar are available.
1.7.3 BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it sends y
back the files by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly «
BITNET, EARN, or NetNorth. BITFTP is a public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete help file, send HELP
the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous

PASS your Internet email address (not your bitnet address)
CD /published/oreilly/xbook/motif

DIR

BINARY

GET examplesl2.tar.Z

QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the archive. Since you &
probably not on a UNIX system, you may need to get versions of uudecode, uncompress, atob, and tar for yc
system. VMS, DOS, and Mac versions are available. The VMS versions are on gatekeeper.dec.com
larchive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

1 Preface 1.7.4 UUCP

1.7.4 UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM—compatible PCs and Apple Macintoshes
The examples are available by UUCP via modem from UUNET; UUNET's connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your company has an acco
with UUNET, you will have a system with a direct UUCP connection to UUNET. Find that system, and type:

uucp uunet\!l~/published/oreilly/xbook/motif/examples12.tar.Z yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should appear some time |
(up to a day or more) in the directory /usr/spool/uucppublic/yourname. If you don't have an account but would like
one so that you can get electronic mail, then contact UUNET at 703-204-8000.

It's a good idea to get the file /published/oreilly/xbook/motif/ls-IR.Z as a short test file containing the filenames at
sizes of all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

1.7.5 Copyright

The example programs are written by Dan Heller and Paula Ferguson for the Motif Programming Manual, Copyrig
1994 O'Reilly & Associates, Inc. Permission to use, copy, and modify these programs without restriction is here
granted, as long as this copyright notice appears in each copy of the program source code.

For the purposes of making the book easier to read, the above copyright notice does not appear in the prog
examples. However, the copyright does exist in the electronic form of the programs available on the Internet.

1.7.6 Compiling the Example Programs

Once you have the examples and you've unpacked the archive as described above, you're ready to compile them
easiest way is to use imake, a program supplied with the X11 distribution that generates proper Makefiles on a w
variety of systems. imake uses configuration files called Imakefiles that are included with the examples. If you ha
imake, you should go to the top-level directory containing the examples, and type:

% xmkmf
% make Makefiles
% make

The examples all have the same application class for purposes of the app—defaults file. The class name is "Den
and the app-defaults file (Demos) in the main examples directory should be placed ir
/usr/lib/X11/app-defaults/Demos on a UNIX system. If you can't write to that directory, or if your normal X11
directory tree is installed elsewhere, you should set the environment variable XAPPLRESDIR to the directory whe
you installed the examples.

1.8 Notes on Z—-Mall

Many of the screenshots in this book that are not based on the example programs are of Z—Mail, an electronic r
program. Z-Mail is the culmination of years of work, starting with a freely—distributed program called Mail User's
Shell (Mush). Mush's only GUI interface was SunView, although it also supported tty and curses interfaces. Over 1

1 Preface 1.9 Acknowledgments

course of writing this book, | developed the Motif interface for Z—Mail that you see here, which was my reality—chec
that what | preach really does work.

It should be mentioned that Z—Mail also supports an OPEN LOOK interface. To do the OPEN LOOK version, | chot
to use OLIT (OPEN LOOK Intrinsics Toolkit) because, like Motif, it is based on the X Toolkit Intrinsics. Xt is a great
environment for developing applications for the X environment. | also believe that the best applications are tho
whose user interfaces can be abstracted, generalized, and modularized so that you can unplug one interface and p
another. My approach to doing that is also reflected in this book, although not as a major topic.

Since the first writing of this book, I'm happy to say that Z—Mail has become a great success. It has been portec
Microsoft Windows and to the Apple Macintosh, both of which have graphical user environments that ar
substantially different from Motif in look, feel, and API implementations. However, the models described in thi
book, namely the abstraction and generalization of core components from one another, were maintained througt
the course of the porting processes.

Dan Heller

1.9 Acknowledgments

The current edition of this book was updated to cover Motif 1.2, including drag and drop and internationalization, |
Paula Ferguson. Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning everything
could about UIL and Mrm, in order to write the UIL programming material for this edition. He did a great job of
covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I'm sure that he had other projects
would have liked to send my way. | don't think either one of us had any idea how involved this update project wou
become. He also provided editorial support that helped keep me on track in the final stages of the work on the book

The other writers at O'Reilly & Associates in Cambridge, Valerie Quercia and Linda Mui, provided support that ke
me sane while | was working on the book. Their willingness to listen and offer advice is greatly appreciated. Ext
gratitude goes to Valerie Quercia for her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions about the technical details of Mc
and X. Douglas Rand, Scott Meeks, and David Brooks at OSF answered questions and helped review the r
material. Daniel Jahn, of SAS Institute, Inc., also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final form of this book is the work:
the staff at O'Reilly & Associates. The authors would like to thank Chris Reilly for the figures, Donna Woonteiler
Chris Tong, and Ellie Cutler for indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemari
Fisher O'Leary, Kismet McDonough, and Eileen Kramer for copyediting and production of the final copy. Thanks als
to Donna Woonteiler for her patience in helping me understand the production process.

Finally, I'd like to thank my friends for putting up with me when | kept telling them that I'd be done working non-stoy
in a month or two. Special thanks to my housemate, Meredith Hunt, who put up with me when | was stressed out
not much fun to live with, and who took care of the cats when | wasn't around. My friends Karen Lewis and Li
Bradley opened their house to me when | needed to escape and be someplace where there are mountains. And t
to the great people at the Boston Rock Gym, who provided me with a much—-needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any errors or omissions that remain.
Paula M. Ferguson

10

1 Preface 1.9 Acknowledgments

The first edition of this book took over a year and a half to write and compile from the beginning. But when | loo
back on the entire effort, and | think about what it takes to do things like this (and other difficult things in life), |
realize that what it really requires is a state of mind and a mental model that lends itself to seeing the big picture «
choosing to do what's necessary to get the job done.

To this, | can only credit one person, Tim O'Reilly, my friend and editor of this book. It's his approach to life, hi
values, his way of thinking about things, and his talent for expressing them is what has influenced me more th
anything else in adopting the kind of mental framework necessary to write a book like this (or to start my compar
Z-Code Software, or to do anything | do in life). He never gives me advice when | ask for it, nor does he tell me wt
to do. Instead, he uses quotes, cites anecdotes, or just describes an abstract thought that always seems
appropriate to every situation. In short, he's shown me a way of thinking about things that appreciates the big pictur
take this with me wherever | go, and in whatever | do. Without it, | couldn't have written this book.

Those who worked most closely with me on the project include Irene Jacobson, who dedicated long hours
meticulous editing and support. Her intuition and insistence on proper use of words saved many cuts of Tim O'Reill
scalpel. David Lewis also gets super—high marks for his excellent feedback, for his technical expertise, and
helping take care of certain Z—Mail ports while | was busy hunched over this computer. More thanks go to the gre
folks at Z-Code Software, Bart Schaefer and Don Hatch, for not laughing at me when | told people for at least :
months that the book would take "just two more weeks now." (I really meant it, too!) Actually, they helped quite a b
with reading nroff'd manuscripts, and by taking care of the business whenever | was at O'Reilly & Associates' offic
in "Bahston."

The figures in this book come in two forms: screendumps and hand—generated figures done by Chris Reilly. Whe
super job he did——and always on time. And how can | thank Kismet McDonough, Lenny Muellner, Rosanne Wagg
Mike Sierra, Eileen Kramer, and the other production folks at O'Reilly & Associates, who did a wonderful job o
copyediting, proofing, page layout, and all the other things that make the difference between a manuscript an
finished book. And that's not all: Ellie Cutler wrote the index. Tony Marotto of Cambridge Computer Associate
figured out how to convert our screen dumps into PostScript files and how to scale screen dumps without the mc
and plaid patterns you see in many books. He used Jeff Poskanzer's pmbplus to convert xwd dumps to gif format,
then wrote a set of image—processing programs that shift and enhance the tones. Daniel Gilly took on the enornr
job of developing the reference appendices when it became clear that | wouldn't have time.

Enthusiastic applause goes to Libby Hanna (do | get a real official OSF/Motif decoder ring now!!??), David Brook
Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsworth, and the entire cast at OSF in Cambridge for tf
support. And, of course, everyone on the motif-talk mailing list. (I wish | could remember all your names!)

People | can't forget: Bill "Rock" Petro, Akkana, Mike Harrigan at NCD for the terminal, Danny Backx at BIM (sorry
| didn't get you any review copies!), John Harkin, and certain folks at Sun that I'd love to mention, but | can't becat
they're into that OL-thang and they wouldn't want to be associated with the M—word, Jordan Hayes, Paula Fergus
and Kee Hinckley (just because he's cool). Also thanks to Ralph Swick and Donna Converse at the X Consortium
being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what's going on in the world, since | have I
time to look out the window; to Short Attention—Span Theatre, for keeping me amused; and to Yogurt World, fc
keeping me fed.

This book was written using a Sun workstation, the vi editor (for which | guess | ought to thank Bill Joy), SoftQuad
sqtroff, X11R4 and various versions of Motif (1.0 through 1.1.3).

For catching and reporting errors that have been fixed in the second printing, I'd like to thank Akkana, Wayr
Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wagner, Andrew Wason, Tim Weinrich, and Bill Wohler.

11

1 Preface 1.10 We'd Like to Hear From You

Dan Heller

1.10 We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but you may find that feature
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as
suggestions for future editions, by writing:

O'Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@ora.com (via the Internet)
uunetloralinfo (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com (via the Internet)

12

2 Introduction to Motif

This chapter answers the question "Why Motif?" in terms of the development of applications that are "easy enough
your mother to use." It suggests some of the complexities that the programmer has to master in order to make
application simple.

Congratulations! After slaving behind the computer for months, fighting a deadline that seemed impossible to me
you've finished your software product and it's a big hit. The critics love it, you're in the money, and everyont
including your mother, is buying your new product. Just as everything seems to be going your way, your wor
nightmare comes true: your mother calls and asks you how to use it.

An unlikely scenario? Not if you're developing applications to run under the Motif graphical user interface (GUI). A
a proposed standard for graphical user interfaces, Motif may be implemented on a wide range of computer platfor
from large IBM mainframes right down to the PC that your mom may be using. The Open Software Foundatic
(OSF), developer of the Motif GUI, hopes to reach all kinds of computers and computer users no matter hc
advanced (or limited) their computer skills may be.

So, will your mom really call you for help? Well, mine did. In fact, she did something worse. She wanted me t
explain how to use a software product | didn't write. | didn't know how her software worked or even what it wa:
Fortunately, though, the software was based on Microsoft Windows, which has more than a passing similarity

Motif. The experience of providing technical support to my mother reminded me of some of the fundamental concej
behind the design of a user interface and the role of the application programmer in carrying out that design.

2.1 A True Story

Before | tell my story, let me start with a little background. | have been developing software for the X Window
System for several years. Every now and then, when the family gets together for dinner, someone always asks
same thing, "So, explain it to me again: just what is it that you do?" | launch into my usual speech: "It's called
Windows, dad... uh, no, mom, it's computer software... it's rather hard to explain, but..." The attention span lasts ¢
until the next course is served, at which time the discussion turns to new ways for cooking eggplant. Little did | reali
that something actually registered with someone in my family, because shortly thereafter, | got a call from my mom.
Mom: Guess what?!

Me: What?

Mom: Our company is switching to a new line of software based on your work!

Me: Really? You're going to use electronic mail?

Mom: No, all of our insurance packages use this new software that runs under Windows. You wrote that, didn't you

Me: No, mom. | write software using X Windows —— and | didn't write X, | just use it. | think you're talking about
Microsoft Windows. You're using it with your PC, right?

Mom: That's right, but it looks exactly like your software, so | figured you could show me how to use it. | have never
seen this stuff before.

13

2 Introduction to Motif 2 Introduction to Motif

(Uh, oh... | see it coming now. Last time she wanted me to help her explain her computer to her, | ended up translat
the entire DOS 2.0 user's guide into English, which she conveniently forgot in about a week.)

Me: Mom, | don't know Microsoft Windows, | know X Windows and they're not the same...

Mom: You mean you won't help me?

Me: You don't understand —— | can't help you. MS-Windows has nothing to do with X...

Silence.

Me: | don't think I'm getting through to you.

Silence.

Me: Ok, I'll be right over...

Despite all my explanations of the X Window System, the only keyword my mom remembered was Windows. | h:
high hopes, though, because | was actually going to teach her something related to what | do for a living. And t
time she had to listen because her job depended on it.

After some fidgeting with diskettes and other necessary start—up procedures, | finally got Microsoft Windows 3.0
and running. Sure enough, it looked just like Motif. Several applications came up by default: a clock, an editor
some sort, and a little calendar program. Immediately, the questions started flying at me:

Mom: How do you access those buttons at the top of the window?

Me: Those are called Pulldown Menus and every application has them. They are located in what is called a MenuB:

Mom: What does "F1" mean?

Me: The "F" denotes a function key and the "1" indicates it's the first function key. Pressing it gives you help
depending on where the cursor is. For example...

Mom (interrupting): Why are these keys labeled "ALT?" What do they do?

Me: Oh, those are used in conjunction with other keys. You press "ALT" and then some other key and you get spec
attention, like...

Mom (growing frustrated): Look what you did. Now there are too many windows up. How do | get back to the one |
was using?

Me (fighting for words): Well, you see, you can move from one window to the next or between elements within a
window by using the Tab key and possibly some other key like the Control key, the Shift key, or the Alt key, or
maybe a combination of several of these keys depending on where you want to go...

Mom (sitting back and sighing): Oh, that's way too complicated, I'll never remember all that. And just look at those
colors——they're awful.

Me (trying to sound encouraging): You can change them using this tool...

14

2 Introduction to Motif 2.2 Basic User—interface Concepts

It was a long grueling day, but she eventually figured out how to do most of what she had to do. After she memoriz
those actions she used most frequently, she seemed quite capable and no longer needed my supervision. Her fa
trick was Alt—-F3, which closed a window and terminated a program. Because she had several things figured ou
thought I'd dare teach her something new.

Me: You know, if you don't want to use that key sequence, you can define it yourself by...

Mom (protecting the computer like it was her only child): NO! Don't touch anything! | know how to use it now, so
don't confuse me any more!

My fault. | figured that since she was pleased that she could change window colors, she'd be eager to make o
aesthetic alterations. Her reaction to my offer to teach her how to change keyboard input foreshadowed what \
about to come. | was in the other room when | heard a screech: "The computer is broken! The Alt—=F3 thingy y
showed me doesn't work any more!" Sure enough, it didn't work on the window she was trying to use it on, but as
discovered, that was the only window on the screen where it didn't work. It turned out that the program she tried it
didn't understand the Alt—-F3 thingy. It was devastating for my mom and, needless to say, she will never run tf
program again.

We never did get to her new insurance software; we didn't have to. All she needed to learn was how to use
graphical user interface. She now reports having figured out her company's software "all by herself" and | can't t
credit for teaching her.

2.2 Basic User—interface Concepts

There are many lessons an application designer can learn from this story. As it so happens, the designer anc
application programmer are often the same person. But whether you are the designer of the software or an engi
responsible for implementing someone else's design, there are still some basic principles that will benefit you in yi
work. Let's begin with the basics drawn from this particular story:

« All applications running on a user's workstation should have a consistent interface design. Programs that
deviate from the expected design will almost assuredly confuse the user even if the changes were intended
the user's benefit. Chances are also high that the user will not want to use the questionable software again.

» Users rely on rote memory; they will remember seemingly complicated interface interaction techniques
provided that the functions they perform are useful and are invoked frequently. There is a limit, however, to
how much users want to remember. It is important that essential or frequently used functions follow
memorable patterns.

» Users, especially novices, will probably not want to customize or alter their applications in any way. If they
do, the available methods must be as easy and painless as possible.

If you are a cast—in—stone UNIX software engineer, you may be quite skeptical about this last point. It is true that,
traditionally, UNIX applications are extremely flexible, offering the user many options for modifying functional or
aesthetic details. One of the first things the hard—core X programmer learns is that "the user is always right; if he
wants to customize his interface, by God you had better let him."

This principle is absolutely correct. Unfortunately, many early X applications carry it too far and end up "spineless
Many such programs actually require the user to make certain customizations in order for the program to be usabl
attractive. For some programs, the problem worsens if unreasonable customization settings are given, since there
sanity—checking for unreasonable configurations.

So far, such customization issues have not gotten out of hand because UNIX and X applications are used aln

15

2 Introduction to Motif 2.3 What Is Motif?

exclusively by technical people who understand the environment and know how to work within it. But it is now tim
to consider users who know absolutely nothing about computers and who don't want to—-they are only using y«
software because they have to.

2.3 What Is Motif?

So, back to Motif. What is it and how can it help you solve your user—interface design goals? To start, Motif is a set
guidelines that specifies how a user interface for graphical computers should look and feel. This term describes t
an application appears on the screen (the look) and how the user interacts with it (the feel).

the figure shows a Motif application.

Tolder Message View Find Sort Coanpose Options Lawout Eel'pl

Falder walh I 20 total, 0 nevw. 0 nuread, 0 cleleted

2 New Arcivals

Mlessages: I pEUS LIS

3 Tee Fearen Navr 15 0 Npw 81 4id oer ane ~Fia "n ¥ Y
T An Arllay Woe 1710 Bdyps 12°F) Sua o= HamiFl

3 Iileer. Xcane: Mar £ 2 Afpn [24) ol 62 Zcoject mwetirs

2 Auliwy 3lious: Maw 22 9 1520 (00 Tawsdey Aysn

1) . Lawoefiiz.uu Apr 11U lien (¥ zludl

.

Tut OFeslle

-

Eax_eviadd. cow bpx

s 12 10 Llzw (M0 4snothez cazny Zag
& = 1aws | == nan Apr 14 I 0 il aydera
15 = ¥ evic erei- v 17 0 Hys 2710 ¢ A Sima

A A Flanngey Y

- B E LIRS i XYNeeant e -k
Xaren lawis oct 1= 7 Afga

—
M
"

851 Ra: zkhiz veekznd
13 Litds ¥l Moo 2 I 0&pa (720 evdlw.'z mewoiig ionls
12 _ Lo 2 Hu O, svouaes Nue = 5 Zhpa (U6 Jlanz
&) o Laz Boallew Huwe = M Wdpa (280 lacks ¥i
14 I~
|
Re«dl De]aetvel 'L'n-daele!el SAMI Cotmpo-sel anlyl Nesend| Ti=late F-orwamll
dadativ= C hav=Spanl e ANt T crel it sesd OF vessanes 2
7
Chmmand:

A Motif application

The user interacts with the application by typing at the keyboard, and by clicking, selecting, and dragging vario
graphic elements of the application with the mouse. For example, any application window can be moved on the scr
by moving the pointer to the top of the window's frame (the title bar), pressing and holding down a button on tt
mouse, and dragging the window to a new location. The window can be made larger or smaller by pressing a mo
button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate application actions. Motif uses clev

highlighting and shadowing to make buttons, and other components, look three—dimensional. When a button
clicked on, it actually appears to be pressed in and released.

16

2 Introduction to Motif 2.3 What Is Motif?

A row of buttons across the top of most applications forms a menu bar. Clicking on any of the titles in the menu &
pops up a menu of additional buttons. Buttons can also be arranged in palettes that are always visible on the sci
When a button is clicked, the application can take immediate action or it can pop up an additional window callec
dialog box. A dialog box can ask the user for more information or present additional options.

This style of application interaction isn't new to most people, since the Apple Maclintosh popularized it years ag
What is different about Motif is that the graphical user interface specification is designed to be independent of t
computer on which the application is running.

Motif was designed by the Open Software Foundation (OSF), a non—profit consortium of companies such
Hewlett—Packard, Digital, IBM, and dozens of other corporations. OSF's charter calls for the development «
technologies that will enhance interoperability between computers from different manufacturers. Targete
technologies range from user interfaces to operating systems.

Part of OSF's charter was to choose an appropriate windowing system environment that would enable the technol
to exist on as wide a range of computers as possible. It was decided that the OSF/Motif toolkit should be based or
X Window System, a network—-based windowing system that has been implemented for UNIX, VMS, DOS
Macintosh, and other operating systems. X provides an extremely flexible foundation for any kind of graphical us
interface.

When used properly, the Motif toolkit enables you to produce completely Motif-compliant applications in a relativel
short amount of time. At its heart, though, Motif is a specification rather than an implementation. While most Mot
applications are implemented using the Motif toolkit provided by OSF, it would be quite possible for an applicatio
implemented in a completely different way to comply with the Motif GUI. The specification is captured in two
documents: the Motif Style Guide, which defines the external look and feel of applications, and the Applicatic
Environment Specification, which defines the application programmer's interface (API). Both books have be¢
published for OSF by Prentice—Hall and are available in most technical bookstores.

The Motif specifications don't have a whole lot to say about the overall layout of applications. Instead, they foci
mainly on the design of the objects that make up a user interface——the menus, buttons, dialog boxes, text entry,
display areas. There are some general rules, but for the most part, the consistency of the user interface relies o
consistent behavior of the objects used to make it up, rather than their precise arrangement.

The Motif specification is broken down into two basic parts:

» The output model describes what the objects on the screen look like. This model includes the shapes of
buttons, the use of three—dimensional effects, the use of cursors and bitmaps, and the positioning of windov
and subwindows. Although some recommendations are given concerning the use of fonts and other visual
features of the desktop's, Matif is flexible in most of these recommendations.

» The input model specifies how the user interacts with the elements on the screen.

The key point of the specification is that consistency should be maintained across all applications. Similar
user—interface elements should look and act similarly regardless of the application that contains them.

Motif can be used for virtually any application that interacts with a computer user. Programs as conceptually differe
as a CAD/CAM package or an electronic mail application still use the same types of user—interface elements. Wi
the user interface is standardized, the user gets more quickly to the point where he is working with the applicati
rather than just mastering its mechanics.

My experience with Microsoft Windows and my mother's new software demonstrates how far Motif has come i
reaching this goal. | was faced with a window system that | had literally never seen before and an operating syste

17

2 Introduction to Motif 2.4 Designing User Interfaces

rarely use (DOS), but that didn't prevent me from using the application. This is not a coincidence; | knew how to u
MS-Windows because its user—interface is based on the same principles as Motif. Motif can be seen as a supers
both MS-Windows and Presentation Manager. Even though the others came first, Motif views them as speci
implementations of an abstract specification.

The Motif interface was intentionally modeled after IBM's Common User Access (CUA) specification, which define:
the interface for OS/2 and Microsoft Windows. The reason for this is twofold: first, there is a proven business moc
for profiting from an "open systems" philosophy; second, the level of success and acceptance of Microsoft Windo
in the PC world is expected to be quite substantial. As a result, more and more vendors are jumping on the bandwe
and are supporting Motif as their native graphical interface environment.

Just as my mom becomes more and more familiar with how to use Windows-based software, so too are thousanc
other PC users. As the PC world migrates to UNIX and other larger—scale computers, so too will their applications.
order to keep their customer base, the developers of those PC applications will adopt Motif as the GUI for the UN
versions of their software. As a result, the next few years will see the number of Motif users and developers gr
astronomically as Motif becomes the focal point for software and hardware companies alike.

You have two options for making applications Motif-compliant. You can write the entire application yourself, anc
make sure that all your user-interface features conform to the Motif GUI specifications, or you can use
programming toolkit, which is a more realistic option. A toolkit is a collection of prewritten functions that implement
all the features and specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce good programming techniques. It isn't goir
to tell you that there are too many objects on the screen or that your use of colors is outrageous. The job of Mot
solely to provide a consistent appearance and behavior for user—interface controls. So, before we jump into
mechanics of the Motif toolkit, let's take a moment longer with the philosophy of graphical user interfaces.

2.4 Designing User Interfaces

The principles behind an effective user interface cannot be captured in the specifications for Motif or any other Gl
Even though the Maotif toolkit specifies how to create and use its interface elements, there is still quite a bit left unsa
As the programmer, you must take the responsibility of using those elements effectively and helping the user to be
productive as possible. You must take care to keep things simple for the beginner and, at the same time, not res
the more experienced user. This task is perhaps the most difficult one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user—interface design is usually a result
years of practice: you throw something at a user, he plays with it, complains, and throws it back at you. Experier
will teach you many lessons, although we hope to guide you in the right direction, so that you can avoid mal
common mistakes and so that the ones that you do make are less painful.

So, rather than having absolute commandments, we rely on heuristics, or rules of thumb. Here is a rough list to s
with:

» Keep the interface as simple as possible.

» Make direct connections to real-world objects or concepts.
« If real-world metaphors are not available, improvise.

» Don't forget to keep the interface simple.

» Don't restrict functionality to accommodate simplicity.

This list may sound flippant, but it is precisely what makes designing an interface so frustrating. Keeping an interfac

18

2 Introduction to Motif 2.4 Designing User Interfaces

as simple as possible relies on various other factors, the most basic of which is intuition. The user is working with
your application because he wants to solve a particular problem or accomplish a specific task. He is going to be
looking for clues to spark that connection between the user interface and the preconceived task in his mind. Strive t
make the use of an application obvious by helping the user form a mental mapping between the application and
real-world concepts or objects. For example, a calculator program can use buttons and text areas to graphically
represent the keypad and the one-line display on a calculator. Most simple calculators have the common digit and
arithmetic operator keys; a graphical display can easily mimic this appearance. Other examples include a
programmatic interface to a cassette player, telephone, or FAX machine. All of these could have graphical equivale
to their real-world counterparts.

The reason these seemingly obvious examples are successful interface approaches is because they take advant
the fact that most people are already familiar with their real-life counterparts. But there is another, less obvio
guality inherent in those objects: they are simple. The major problem concerning interface design is that n
everything is simple. There isn't always a real-world counterpart to use as a crutch. In the most frustrating cases,
concept itself may be simple, but there may not be an obvious way to present the interaction. Of course, once some
thinks of the obvious solution, it seems odd that it could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics say that 70% of VCR owners don't knc
how to program one. How many times have you seen the familiar 12:00-AM flashing in someone's living room
Researchers say that this situation occurs because most VCRs are poorly designed and are "too featureful." Th
half-right; the problem is not that they are too featureful, but that the ways to control those features are t
complicated. Reducing the capabilities of a VCR isn't going to make it easier to use; it's just going to make it le
useful. The problem with VCRs is that their designers focused too much on functionality and not enough on usabilit

So, how do you design an interface for a VCR when there is no other object like it? You improvise. Sure, the VCR i
simple device; everyone understands how one is supposed to work, but few people have actually designed one tf
easy to use until recently. Maybe you've heard about the new device that, when connected to your VCR, enables
to have a complete TV program guide displayed on your screen in the bar—graph layout similar to the night
newspaper listings. All you have to do is point and click on the program you want to record and that's it——you're dot
No more buttons to press, levels of features to browse through, dials to adjust or manuals to read. At last, the ri
interface has been constructed. None of the machine's features have been removed. It's just that they are
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has not been reduced, y
simplicity has been heightened because a creative person thought of a new way to approach the interface. The le
here is that no object should be difficult to use no matter how featureful it is or how complex it may seem. You mu
rely heavily on your intuition and creativity to produce truly innovative interfaces.

Let's return to computer software and how these principles apply to the user-interface desigh model. The fi
heuristic is simplicity, which typically involves fewer, rather than more, user—interface elements on the scree
Buttons, popup menus, colors, and fonts should all be used sparingly in an application. Often, the availability
hundreds of colors and font styles along with the attractiveness of a three—dimensional interface compels mz
application programmers to feel prompted, and even justified, in using all of the bells and whistles. Unfortunatel
overuse of these resources quickly fatigues the user and overloads his ability to recognize useful and import
information.

Ironically, the potential drawbacks to simplicity are those that are also found in complexity. By oversimplifying ar
interface, you may introduce ambiguity. If you reduce the number of elements on your screen or make your icot
representations too simple, you may be providing too little information to the user about what a particular interfa
element is supposed to do. Underuse of visual cues may make an application look bland and uninteresting.

19

2 Introduction to Motif 2.4 Designing User Interfaces

One of Motif's strengths is the degree of configurability that you can pass on to the end user. Colors, fonts, and a w
variety of other resources can be set specifically by the user. You should be aware, however, that once vy
application ships, its default state is likely to be the interface most people use, no matter how customizable it may
While it is true that more sophisticated users may customize their environment, you are ultimately in control of ho
flexible it is. Also, novice users quickly become experts in a well-designed system, so you must not restrict the u
from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application may be intentionally compl
Such applications are only supposed to be used by sophisticated users. For example, consider a 747 airc
Obviously, these planes are intended to be flown by experts who have years of experience. In this case, aesthets
not the goal of the interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must evaluate both the goals of y«

particular application and your intended audience. Only with a complete understanding of these issues will you
able to determine the best interface to use. And remember, your mom just might call you for help.

20

3 The Motif Programming Model

This chapter teaches the fundamentals of Motif by example. It dissects a simple "Hello, World" program, showing t
program structure and style common to all Motif programs. Because much of this material is already covered in de
in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, this chapter can be used as a refresher or
light introduction for those who haven't read the earlier book. It makes reference to Volume One, Xlib Programmir
Manual, and Volume Four to point out areas that the programmer needs to understand (windows, widgets, eve
callbacks, resources, translations) before progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrinsics (Xt), this chapter briefly
reviews the foundations of Motif in Xt. This review serves a variety of purposes. First, for completeness, we defir
our terms, so if you are unfamiliar with Xt, you will not be completely at sea if you forge ahead. Second, there a
many important aspects of the X Toolkit Intrinsics that we aren't going to cover in this book; this review gives us
chance to direct you to other sources of information about these areas. Third, Motif diverges from Xt in son
important ways, and we point out these differences up front. Finally, we point out some of the particular choices y
can make when Xt or Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read the first few chapters
Volume Four, X Toolkit Intrinsics Programming Manual. Portions of Volume One, Xlib Programming Manual, and
Volume Three, X Window System User's Guide, Motif Edition, may also be appropriate.

3.1 Basic X Toolkit Terminology and Concepts

As discussed in Chapter 1, Introduction to Motif, the Motif user—interface specification is completely independent o
how it is implemented. In other words, you do not have to use the X Window System to implement a Motif-styl
graphical user interface (GUI). However, to enhance portability and robustness, the Open Software Foundation (O
chose to implement the Motif GUI using X as the window system and the X Toolkit Intrinsics as the platform for th
Application Programmer's Interface (API).

Xt provides an object-oriented framework for creating reusable, configurable user—interface components call
widgets. Motif provides widgets for such common user-interface elements as labels, buttons, menus, dialog bo»
scrollbars, and text—entry or display areas. In addition, there are widgets called managers, whose only job is to cor
the layout of other widgets, so the application doesn't have to worry about details of widget placement when t
application is moved or resized.

A widget operates independently of the application, except through prearranged interactions. For example, a but
widget knows how to draw itself, how to highlight itself when it is clicked on with the mouse, and how to respond t
that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the Motif library. Xt defines certain b
classes of widgets, whose behavior can be inherited and augmented or modified by other widget classes (subclas
The base widget classes provide a common foundation for all Xt—based widget sets. A widget set, such as Motif's
library, defines a complete set of widget classes, sufficient for most user—interface needs. Xt also suppo
mechanisms for creating new widgets or for modifying existing ones.

Xt also supports lighter—weight objects called gadgets, which for the most part look and act just like widgets, but th
behavior is actually provided by the manager widget that contains them. For example, a pulldown menu pane car
made up of button gadgets rather than button widgets, with the menu pane doing much of the work that wol

21

3 The Motif Programming Model 3 The Motif Programming Model

normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the class hierarchy. For example,
Motif PushButton class inherits the ability to display a label from the Label widget class, which in turn inherits eve
more basic widget behavior from its own superclasses. See Volume Four, X Toolkit Intrinsics Programming Manua
for a complete discussion of Xt's classing mechanisms; see Chapter 3, Overview of the Motif Toolkit, for details abc
the Motif widget class hierarchy.

The object-oriented approach of Xt completely insulates the application programmer from the code inside of widge
As a programmer, you only have access to functions that create, manage, and destroy widgets, plus certain pL
widget variables known as resources. As a result, the internal implementation of a widget can change withc
requiring changes to the API. A further benefit of the object-oriented approach is that it forces you to think about
application in a more abstract and generalized fashion, which leads to fewer bugs in the short run and to a be
design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit for an instance of a particular widget clas
which can be customized by setting its resources. All Motif PushButton widgets have the ability to display a label;
instance of the PushButton widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car you want, then you choose |
options you want, and then you drive an actual car off the lot. There may exist many cars exactly like yours, oth
that are similar, and still others that are completely different. You can create widgets, destroy them, and even cha
their attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo, and so on.

Widgets are designed so that many of their resources can be modified by the user at run—time. When an applicatic
run, Xt automatically loads data from a number of system and user—specific files. The data from these files is usec
build the resource database, which is used to configure the widgets in the application. If you want to keep the u:
from modifying resources, you can set their values when you create the widget. This practice is commonly referrec
as hard-coding resources.

It is considered good practice to hard—code only those resource values that are essential to program operation al
leave the rest of the resources configurable. Default values for configurable resources are typically specified in
application defaults file, which is more colloquially referred to as the app—defaults file. By convention, this file it
stored in the directory /usr/lib/X11/app-defaults and it has the same name as the application with the first lett
capitalized. The app—defaults file is loaded into the resource database along with other files that may contain differ
values set by the system administrator or the user. In the event of a conflict between different settings, a complex
of precedence rules determines the value actually assigned to a resource. See Volume Four, X Toolkit Intrins
Programming Manual, for more information on how to set resources using the various resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are many resources that neither
application nor the user should ever need to change. Some of these resources provide fine control over
three—dimensional appearance of Motif widgets; these resources should not be modified, since that would interf
with the visual consistency of Motif applications. Other resources are used internally by Motif to make one larg
complex widget appear to the user in a variety of guises.

The callback resources for a widget are a particularly important class of resources that must be set in the applica
code. A widget that expects to interact with an application provides a callback resource for each type of interactiol
supports. An application associates a function with the callback resources in which it is interested; the function
invoked when the user performs certain actions in the widget. For example, a PushButton provides a callback
when the user activates the button.

22

3 The Motif Programming Model 3.2 The Xm and Xt Libraries

Note, however, that not every event that occurs in a widget results in a callback to an application function. Widge
are designed to handle many events themselves, with no interaction from the application. All widgets know how
draw themselves, for example. A widget may even provide application—like functionality. For example, a Text widgt
typically provides a complete set of editing commands via internal widget functions called actions. Actions al
mapped to events in a translation table. This table can be augmented, selectively overridden, or completely repla
by settings contained in the implementation of a widget class, in application code, or in a user's resource files.

In the basic Xt design, translations are intended to be configurable by the user. However, the purpose of Xt is
provide mechanism, not impose user—interface policy. In Motif, translations are typically not modified by either th
user or the application programmer. While it is possible for an application to install event handlers or new translatic
and actions for a widget, most Motif widgets expect application interaction to occur only through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks, we don't discuss translatic
very often in this book. Some of the Motif widgets, particularly buttons when they are used in menus, have undefin
behavior when their translations are augmented or overiddden. An experienced Xt programmer may feel that Mot
limitations on the configurability of translations violates Xt. But consider that Xt is a library for building toolkits, not
a toolkit itself. Motif has the further job of ensuring consistent user—interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF's implementation is a matter of judgement, but
should at least be taken into account. At any rate, you should be aware of the limitations when configuring Mo
widgets. Motif widgets provide callback resources to support their expected behavior. If a widget does not have
callback associated with an event to which you want your application to respond, you should be cautious about adc
actions to the widget or modifying its translations.

3.2 The Xm and Xt Libraries

A Motif user interface is created using both the Motif Xm library and the Intrinsics' Xt library. Xt provides functions
for creating and setting resources on widgets. Xm provides the widgets themselves, plus an array of utility routir
and convenience functions for creating groups of widgets that are used collectively as single user—interfa
components. For example, the Motif MenuBar is not implemented as one particular widget, but as a collection
smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get events from the window syste
In the application itself, rather than in the user interface, you may also be expected to make lower-level system c
into the operating system, filesystem, or hardware-specific drivers. Thus, the whole application may have calls
various libraries within the system. the figure represents the model for interfacing to these libraries.

23

3 The Motif Programming Model 3.3 Programming With Xt and Motif

Application

User Interface

Motif (Xm) Librar y

Xt Intrinsics

Other
Libraries

Operating System

User-interface library model

As illustrated above, the application itself may interact with all layers of the windowing system, the operating systel
and other libraries (math libraries, rpc, database) as needed. On the other hand, the user-interface portion of
application should restrict itself to the Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the
portability of the user—interface across multiple computers and operating systems. Since X is a distributed windowi
system, once the application runs on a particular computer, it can be displayed on any computer running X——e
across a local or wide—area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should try to use the higher-level
libraries whenever possible. Focus on using Motif-specific widgets and functions, rather than trying to impleme
equivalent functionality using Xt or Xlib. An exception to this guideline is the use of Xt creation routines rather tha
Motif convenience functions for creating simple widgets, as discussed later in the chapter. Higher—level libraries hi
a great number of details that you would otherwise have to handle yourself. By following these guidelines, you c
reduce code complexity and size, creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you may attempt to borrow widget
from other toolkits or write your own. This technique is possible and made relatively simple because Motif is based
Xt. While this book discusses certain methods for extending the Motif library, you should refer to Volume Four, X
Toolkit Intrinsics Programming Manual, for a general discussion of how to build your own widgets. For example, a
application might make good use of a general—-purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and most important step in t
development of an application is its design. You should always identify the parts of the application that are functior
and the parts that make up the user interface. Well-designed applications keep the user—interface code separate
the functional code. You should be able to unplug the Motif code and replace it with another user—interface widget
based on Xt merely by writing corresponding code that mirrors the Motif implementation.

3.3 Programming With Xt and Motif

The quickest way to understand the basic Motif programming model is to examine a simple application. the soul
code is a version of the classic "hello world" program that uses the Motif toolkit. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4. XmStringCreatelLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.

/* hello.c —— initialize the toolkit using an application context and a

24

3 The Motif Programming Model 3.3 Programming With Xt and Motif

* toplevel shell widget, then create a pushbutton that says Hello using
* the varargs interface.

*/

#include <Xm/PushB.h>

main(argc, argv)
int argc;
char *argv[];

Widget toplevel, button;
XtAppContext app;

void button_pushed();
XmString label;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Hello", NULL, O,
&argc, argv, NULL, NULL);

label = XmStringCreatelLocalized ("Push here to say hello");

button = XtVaCreateManagedWidget ("pushme”,
xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,
NULL);

XmStringFree (label);

XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

void

button_pushed(widget, client_data, call_data)
Widget widget;

XtPointer client_data;

XtPointer call_data;

printf ("Hello Yourself!0);
}

The output of the program is shown in the figure.

Push aere to sey aello

Output of hello.c

You can get the source code for hello.c and the rest of the examples in this book via anonymous ftp or other mett
that are described in the Preface. It is a good idea to compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if you have the imake progre

25

3 The Motif Programming Model 3.3.1 Header Files

This program should already be in /usr/bin/X11 on UNIX-based systems that have X11 Release 4 or Releas
installed. You also need the configuration files for imake; they are in /usr/lib/X11/config on most UNIX-base
systems. An Imakefile is a system-independent makefile that is used by imake to generate a Makefile. This proce:
necessary because it is impossible to write a Makefile that works on all systems. You invoke imake using the xml
program. Complete instructions for compiling the examples using imake are provided in the README file include
with the source code.

As explained in the Preface, there are versions of the example programs for both Motif 1.2 and Motif 1.1 availalt
electronically. However, all of the example code in this book is designed to work with Motif 1.2 (and X11R5); the
programs use functions that are not available in Motif 1.1 (and X11R4). Where we use Motif 1.2 functions, we try
mention how to perform the same tasks using Motif 1.1, usually in a footnote. To use the example programs w
Motif 1.1, make the changes we describe. When the necessary changes are significant, we may explain both vers
of the program. For a description of the changes that we made to convert the example programs to Motif 1.2,
Section #smotifl12.

To compile any of the examples on a UNIX system without using imake, use the following command line:

cc -0 —o filename filename.c —IXm —IXt -IX11

If you want to do debugging, replace —O with —g in this command line. The order of the libraries is important. Xm
relies on Xt, and both Xm and Xt rely on Xlib (the —-I1X11 link flag specifies Xlib).

Now let's take a look at this program step by step, noting elements of the underlying Xt model and where Motif diffe
from it.

3.3.1 Header Files

An application that uses the Motif toolkit must include a header file for each widget that it uses. For example, hellc
uses a PushButton widget, so we include <Xm/PushB.h>. The appropriate header file for each Motif widget clas
included on the reference page for the widget in Volume Six B, Motif Reference Manual.

If you simply browse through /usr/include/Xm (or wherever you have installed your Motif distribution) trying to find
the appropriate header file, you will find that each widget class actually has two header files. The one with the na
ending in a "P" (e.g. PushBP.h) is the widget's private header file and should never be included directly by .
application. Private header files are used only by the code that implements a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation from applications. This techniq
provides object-oriented encapsulation and data hiding in the C language, which is not designed to supp
object-oriented programming. (See Volume Four, X Toolkit Intrinsics Programming Manual, for additional
information on the object-oriented design of widgets.)

For some types of objects, you may see another pair of header files, each containing a capital "G" at the end of t
names (for example, PushBG.h and PushBGP.h). These files are for the gadget version of the object. For the n
part, when we talk about widgets, we include gadgets. Later chapters make it clear when to use gadgets and whe
use widgets.

A quick examination of the #include directives in each of the Motif widget or gadget header files reveals that each
of them includes <Xm/Xm.h>, the general header file for the Motif library. <Xm/Xm.h> in turn includes the followin
files:

#include <X11/Intrinsic.h>

26

3 The Motif Programming Mod@&l.3.2 Setting the Language Procedure

#include <X11/Shell.h>
#include <X11/Xatom.h>
#include <Xm/XmStrDefs.h>
#include <Xm/VirtKeys.h>

Therefore, none of these files ever need to be included by your application, as long as you include <Xm/Xm.h>. Sin
<Xm/Xm.h> is included by each widget header file, you do not need to include it directly either. If you look closely a
the code, you'll see that just about every necessary header file is included the moment you include your widget hea
file. This method of using header files contrasts with the way other Xt—-based toolkits, like the Athena toolkit or the
OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

Release 1.2 of the Motif toolkit provides a new header file, <Xm/XmAll.h>, that simply includes all of the publi
header files. The <Xm/ExtObject.h>, <Xm/Traversal.h>, <Xm/VaSimple.h>, and <Xm/VendorE.h> header files
present in Motif 1.1, but they are obsolete in Motif 1.2.

We recommend that you not duplicate the inclusion of header files. One reason is that if you include only the hea
files that you need, whoever has to maintain your code can see which widgets you are dealing with in your sou
files. Another reason is that duplicating header files is generally bad practice, as you run the risk of redeclari
macros, functions, and variables.

However, it isn't always easy to prevent multiple inclusions. For example, <Xm/Xm.h> is included by each widg
header file that you include. All of the Motif, Xt and X header files are protected from multiple inclusion using &
technique called ifdef-wrapping. We recommend that you use this method in your own header files as well. Tl
ifdef-wrapper for <X11/Intrinsic.h> is written as follows:

#ifndef _XtIntrinsic_h
#define _XtIntrinsic_h

/* Include whatever is necessary for the file... */
#endif /* _Xtintrinsic_h */

The wrapper defines _Xtintrinsic_h when a file is first included. If the file is ever included again during the
course of compiling the same source (.c) file, the #ifdef prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source file; the next source file that ge
compiled goes through the same test. If the same files are included, the same macros, data types, and function
declared again for the benefit of the new file. For this reason, you should never write functions in a header file, sinc
would be equivalent to having the same function exist in every source file. Function declarations, however, 8
acceptable and expected.

In addition to the widget header files, you will most likely need other include files specific to your application, such &
<stdio.h> or <ctype.h>.

The order of inclusion is generally not important unless certain types or declarations required by one file are decla
in another. In this case, you should include the files in the necessary order. Otherwise, application—-specific hea

files are usually included first, followed by Ul-specific header files (with Xt header files, if any, preceding Motif
header files), followed by system-specific header files.

3.3.2 Setting the Language Procedure

For Release 5 of the X Window System, the X Toolkit was modified to better support internationalization. At
internationalized application retrieves the user's language (called a locale) from the environment or a resource file .

27

3 The Motif Programming Model 3.3.3 Initializing the Toolkit

operates in that language without changes to the binary. An internationalized application must display all of its text
the user's language and accept textual input in that same language. It must also display dates, times, and numb
the appropriate format for the language environment.

X internationalization is based on the ANSI-C internationalization model. This approach is based on the concept
localization, whereby an application uses a library that reads a customizing database at startup time. This datal
contains information about the characteristics of every locale that is supported by the system. When an applicat
establishes its locale by calling setlocale(), the library customizes the behavior of various routines based on the
locale. See the Third Edition of Volume One, Xlib Programming Manual, for a complete description of the concept:
and implementation of X internationalization.

Xt support of internationalization is trivial in most applications; the only additional code needed is a call tc
XtSetLanguageProc() before the toolkit is initialized. XtSetLanguageProc() sets the language procedure

that is used to set the locale of an application. The first argument to the routine specifies an application context,
second argument specifies the language procedure, and the third parameter specifies additional data that is pas:s
the language procedure when it is called. Since the language procedure is responsible for setting the locale, a
application does not call setlocale() directly. The language procedure is called by
XtDisplaylnitialize().

If the second argument to XtSetLanguageProc() is NULL, the routine registers a default language procedure.
Here's the call that we used in the source code to set the default language procedure:

XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environment variable, verifies that the curre
locale is supported, and returns the value of the current locale. For more information about establishing the locale i
an Xt application, see Volume Four, X Toolkit Intrinsics Programming Manual.

Most of the support for internationalization in Motif 1.2 is provided by Xlib and Xt. Xlib provides support for
internationalized text output, interclient communication, and localization of the resource database, while Xt hand|
establishing the locale. The Motif Text and TextField widgets have been maodified to support internationalized te
input and output; see Section #stextil8n for more information. The Motif routines that work with compound string
and font lists have also been updated in Motif 1.2. See Chapter 19, Compound Strings, for details on the new API
XmString and XmFontList values.

3.3.3 Initializing the Toolkit

Before an application creates any widgets, it must initialize the toolkit. There are many ways to perform this tas
most of which also perform a number of related tasks, such as opening a connection to the X server and loading
resource database. Here's a list of some of the things that are almost always done:

« Open the application's connection to the X server.

* Parse the command line for the standard X Toolkit command-line options plus any custom command-line
options that have been defined for the application.

« Create the resource database using the app—defaults file, if any, as well as any user, host, and locale—speci
resource files.

« Create the application's top—level window, a Shell class widget that handles interaction with the window
manager and acts as the parent of all of the other widgets in the application.

There are several functions available to perform toolkit initialization. The one we use most often is
XtVaApplnitialize(), since it performs all of the functions listed above in one convenient call. Here's the call

28

3 The Motif Programming Model 3.3.3 Initializing the Toolkit

we used in the source code

Widget toplevel;
XtAppContext app;

toplevel = XtVaApplnitialize (&app, "Hello", NULL, O,
&argc, argv, NULL, NULL);

The widget returned by XtVaApplnitialize() is a shell widget. The shell widget acts as the top—-level window

of the application and handles the application's interaction with the window manager. All of the other widgets create
by the application are created as descendents of the shell, which we'll talk about more later in this chapter. The first
argument to XtVaApplnitialize() is the address of an application context, which is a structure that Xt uses to
manage some internal data associated with an application. Most applications do not manipulate the application con
directly. Most often, an application receives an opaque pointer to an application context in the toolkit initialization ca
and merely passes that pointer to a few other toolkit functions that require it as an argument. The fact that the
application context is a public variable, rather than hidden in the toolkit internals, is a forward—looking feature of Xt,
designed to support multiple threads of control.

The simpler X11R3 initialization call, XtInitialize(), is still supported by later versions of the toolkit. Its use is
discouraged because the new initialization calls provide a greater degree of upward compatibility with futul
Xt-based applications. The simpler function creates an application context that is stored internally by Xt. The secc
argument to XtVaApplnitialize() is a string that defines the class name of the application. A class name is

used in resource files to specify resource values that apply to all instances of an application, a widget, or a resou
(See Volume Three, X Window System User's Guide, Motif Edition, and Volume Four, X Toolkit Intrinsics
Programming Manual, for details.) For many applications, the application class is rarely used and the class nham:
important only because it is also used as the name of the application's app—defaults file.

Whenever a widget is created in Xt, its resources must have certain initial (or default) values. You can eith
hard-code the values, allow them to default to widget—defined values, or specify the default values in tf
app—defaults file. These default values are used unless the user has provided his own default settings in ano
resource file.

By convention, the class name is the same as the name of the application itself, except that the first lette|
capitalized. For example, a program named draw would have Some applications follow the convention that if tl
application's name begins with an "X", the X is silent and so the second letter is capitalized as well. For example,
class name of xterm is XTerm. a class name of Draw and an app-defaults filename o
lusr/lib/X11/app—defaults/Draw. Note, however, that there is no requirement that an app—defaults file with this nan
actually be installed.

Exceptions can be made to this convention, as long as you document it. For example, all the example programs in
book have the class name of Demos, which allows us to set certain common defaults in a single file. This techni
can be useful whenever you have a large collection of independent programs that are part of the same suit
applications. The third and fourth arguments specify an array of objects that describe the command-line arguments
your program, if any, and the number of arguments in the array. These arguments are unused in most of the exarn
in this book and are specified as NULL and 0, respectively. The program xshowbitmap.c in the Appendix, Addition
Example Programs, provides an example of using command-line arguments. See Volume Four, X Toolkit Intrinsic
Programming Manual, for a more complete discussion of application—specific command-line arguments.

The fifth and sixth arguments contain the value (argv) and count (argc) of any actual command-line arguments.
The initialization call actually removes and acts on any arguments it recognizes, such as the standard X Too
command-line options and any options that you have defined in the third argument. After this call, argv shoulc
contain only the application name and any expected arguments such as filenames. You may want to check

29

3 The Motif Programming Model 3.3.4 Creating Widgets

argument count at this point and issue an error message if any spurious arguments are found. The seventh argum
the start of a NULL-terminated list of fallback resources for the top—level shell widget created by the initializatio
call. Fallback resources provide a kind of "belt and suspenders” protection against the possibility that an app—defa
file is not installed. They are ignored if the app—defaults file or any other explicit resource settings are found. Wh
no fallback resources are specified, the seventh argument should be NULL.

It is generally a good idea to provide fallbacks for resources that are essential to the operation of your application.
example of how fallback resources can be used by an application is shown in the following code fragment:

String fallbacks|] = {
"Demos*background: grey",
"Demos*XmList.fontList: —*—courier-medium-r—*——12-*",
"Demos*XmText.fontList: —*—courier-medium-r—*——12-*",
[* list the rest of the app—defaults resources here ... */
NULL

I3

toplevel = XtVaApplnitialize (&app, "Demos", NULL, O,
&argc, argv, fallbacks, NULL);

Fallback resources protect your application against a missing app—defaults file, but they do not guard against one
is modified incorrectly or otherwise corrupted, since they are not used if the app-defaults file is present in any for
A better fallback mechanism would provide protection against these types of problems. Fortunately, X11 Releas
introduces a new function, XrmCombineDatabases(), that allows you to provide real fallbacks in case the user or
the system administrator misconfigures the app-defaults file. The eighth parameter is the start of a NULL-terming
list of resource/value pairs that are applied to the top—level widget returned by XtVaApplnitialize(). If there

are no resource settings, which is often the case for this function, you can pass NULL as the eighth parameter. If
do pass any parameters, it should be done just as we describe for XtVaCreateWidget() later in this chapter. All

of the functions whose names begin with XtVa support the same type of varargs—style (variadic) argument lists.

The X11 Release 4 implementation of XtVaApplnitialize() and other varargs functions may not work entirely

as expected for some non—-ANSI-C compilers due to a bug in the way that Xt declares variadic functions. Tt
problem only arises for some compilers that do not understand function prototypes. The problem is rare since i
compiler—-dependent and it only happens on older compilers. It is not a compiler error but an Xt error, since functio
are not supposed to mix fixed parameter declarations with variadic declarations. XtVaApplnitialize() mixes

these declarations; the first seven parameters are fixed while the eighth through nth arguments are variadic. ANS
allows, and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of using XtVaApplnitialize(),

you can try passing an extra NULL parameter after the final NULL. Another option is to use XtApplnitialize(),
which is identical to XtVa-Applnitialize(), but does not contain a variable argument list of resource/values

pairs. Instead, it uses the old—style args and num_args method of specifying resource values, which we describe
later in this chapter.

3.3.4 Creating Widgets

There is a convenience function for creating every class of widget and gadget supported by the Motif toolkit. F
example, to create a PushButton widget, you can use the function XmCreatePushButton(). To create the
corresponding gadget, you can use XmCreatePushButtonGadget(). In addition, there are convenience
functions for creating compound objects. A compound object is a collection of widgets that is treated like a sing
object. For example, a ScrolledList object is really a List widget inside a ScrolledWindow widget.

30

3 The Motif Programming Model 3.3.4 Creating Widgets

XmCreateScrolledList() creates the compound object consisting of both widgets.

The convenience functions for creating all of the different types of widgets are described in Volume Six B, Moti
Reference Manual. In the examples in this book, however, we -typically use the Xt functions
XtVaCreateWidget() and XtVaCreateManagedWidget() for creating simple widgets. These functions

allow you to decide whether to create a widget as managed or unmanaged, while the Motif convenience functic
always create unmanaged widgets. The Xt routines also allow you to set resources for a widget using the vare
interface, which is more convenient than the args and num_args method used by the Motif creation routines.

X nests windows using a parent—child model. A display screen is defined as the root window; every application ha
top—level window that is a child of the root window. A top-level window in turn has subwindows, which overlay it
but cannot extend beyond its boundaries. If a window extends beyond the boundaries of its parent, it is clipped.

Because every widget has its own X window, widgets follow a similar parent—child model. Whenever a widget |
created, it is created as the child of another widget. The shell widget returned by the call t
XtVaApplnitialize() is the top—level widget of an application. It is usually overlaid with a special class of

widget called a manager widget, which implements rules for controlling the size and placement of widget childre
For example, the Motif RowColumn widget is a manager that allows widgets to be laid out in regular rows an
columns, while the Form widget is a manager that allows widgets to be placed at precise positions relative to c
another. A manager widget can contain other manager widgets as well as primitive widgets, which are usec
implement actual user—interface controls. Managers also support gadgets. A gadget is a lighter—weight object the
identical to its corresponding widget in appearance, but does not have its own window.

In the source code the button was created as a child of the top—level shell window. This simple application conta
only one visible widget, so it does not use a manager. Actually, shells are extremely simple managers. A shell
only have one child; the shell makes itself exactly the same size as the child so the shell remains invisible behind
child. Here's the call we used to create the button:

button = XtVaCreateManagedWidget ("pushme”,
xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,
NULL);

The first argument is a string that is used as the name of the widget in the resource database. If a user wants to sp
the color of the button label for the application, he can use the following specification in a resource file:

hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widget in application code. The following
resource specification is not correct:

hello.button.foreground: blue
The resource name does not need to be identical to the variable name given to the widget inside the program, thou
to minimize confusion, many programmers make the two names the same. If you want users to be able to configure
widget resources, be sure to include the names of the widgets in your documentation.

The second argument is the class of the widget to be created. This name is defined in the public header file for
widget. The widget reference pages in Volume Six B list the widget class name for each Motif and Xt widget class.

The third argument is the parent of the widget, which must be a manager widget that has already been created. In
example, the parent of the PushButton widget is toplevel, the shell widget returned by the call to

31

3 The Motif Programmin@Mdilebetting and Getting Widget Resources

XtVaApplnitialize(). The remainder of the argument list is a variable—length list of resource settings. We'll
talk about the format of these resource settings in the next section.

3.3.5 Setting and Getting Widget Resources

A widget class defines resources of its own and it inherits resources from its superclasses. The names of the resol
provided by each widget class (new and inherited) are documented in the widget reference pages in Volume Six
Motif Reference Manual. The most useful resources are described in detail in the individual chapters on each of
Motif widget classes.

When resources are set in a program, each resource name begins with the prefix XmN. These names are mnel
constants that correspond to actual C strings that have the same name without the XmN prefix. For example, the ¢
resource name associated with XmNlabelString is labelString. The XmN identifies the resource as being
Motif-related. Motif also uses the XmC prefix to identify resource class symbols. Xt uses the prefix XtN for an
resources defined by its base widget classes. Motif also provides corresponding XmN names for most of tt
resources. Some toolkits use the XtN prefix, even though its resource are not common to all Xt toolkits. The resou
naming convention has not been used long enough for all vendors to conform to it. If you need access to an Xt—be
resource that does not have a corresponding XmN constant, you need to include the file <X11/StringDefs.h>. Wher
are specifying resources in a resource file or when you are using the —xrm option to specify resources on t
command line, omit the XmN prefix.

The main purpose of the constant definitions for resource names is to allow the C preprocessor to catch spell
errors. If you use the string width rather than the constant XmNwidth, the program still works. However, if you type
widdth, the compiler happily compiles the application, but your program won't work and you'll have a difficult time
trying to figure out why. Because resource names are strings, there is no way for Xt or Motif to report an error wh
an unknown resource name is encountered. On the other hand, if you use XmN-widdth, then the compiler complair
that the token is an undefined variable. The Motif convenience functions, as well as the Xt function
XtCreateWidget() and XtCreateManagedWidget(), require you to declare resource settings in a static

array. You pass this array to the function, along with the number of items in the array. By contrast, the varargs—st
functions introduced in X11R4 allow you to specify resources directly in a creation call, as a NULL-terminated list
resource/value pairs.

In the call to XtVaCreateManagedWidget() in hello.c, the only resource set was the string displayed as the
PushButton's label. Other resources could have been set in the same call, as shown in the following code:

button = XtVaCreateManagedWidget ("pushme”,
xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,
XmNwidth, 200,
XmNheight, 50,
NULL);

These settings specify that the widget is 200 pixels wide by 50 pixels high, rather than its default size, which would
just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no longer be configured by the
Such resources are said to be hard—coded. For example, since we've set the width and height of the PushButton i
call to XtVaCreateManagedWidget(), a user resource specification of the following form is ignored:

*pushme.width: 250
*pushme.height: 100

32

3 The Motif Programmin@Ndiebetting and Getting Widget Resources

It is recommended that you hard—code only those resource values that are absolutely required by your program. M
widgets have reasonable default values for their resources. If you need to modify the default values, specify the
necessary resource values in an app—defaults file, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the resource. When a resource is spet
in a resource file, Xt automatically converts the resource value from a string to the appropriate type. However, wh
you set a resource in your program, you must specify the value as the appropriate type. For example, the M
PushButton widget expects its label to be a compound string (see Chapter 19, Compound Strings), so we crea
compound string, use it to specify the resource value, and free it when we were done.

Rather than specifying a value of the appropriate type, you can invoke Xt's resource converters in a varargs list us
the keyword XtVaTypedArg, followed by four additional parameters: the resource name, the type of value you are
providing, the value itself, and the size of the value in bytes. Xt figures out the type of value that is needed a
performs the necessary conversion. For example, to specify the background color of the button directly in our progr
without calling an Xlib routine to allocate a colormap entry, we can use the following code:

button = XtVaCreateManagedWidget ("pushme”,
xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,

XtVaTypedArg, XmNbackground, XmRString, "red", strlen ("red") + 1, NULL);

The data type in this construct is specified using a special symbol called a representation type, rather than the C t
An XmR prefix identifies the symbol as a representation type. See Volume Four, X Toolkit Intrinsics Programmin
Manual, for more information on resource type conversion and the possible values for representation types. Th
symbols are defined in the same way as the XmN symbols that are used for resource names. After a widget has
created, you can set resources for it using XtVaSetValues(). The values set by this function override any values
that are set either in the widget creation call or in a resource file. The syntax for using XtVaSetValues() is:

XtVaSetValues (widget _id,
resource—value-list,
NULL);

The widget_id is the value returned from a widget creation call, and resource-value-list is a
NULL-terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resources. For examp
XmToggleButtonSetState() sets the XmNset resource of a ToggleButton to either True or False. The

available convenience functions are described in Volume Six B, Motif Reference Manual, and in the chapters on ec
widget class in this book. A convenience function has direct access to the internal fields in a widget's data structul
so it might have slightly better performance than XtVaSetValues(). Functionally, however, the two methods are
interchangeable. The routine used to get widget resource values is XtVaGetValues(). The syntax of this routine is
exactly the same as XtVaSetValues(), except that the value part of the resource/value pair is the address of a
variable that stores the resource value. For example, the following code gets the label string and the width for a Le
widget:

extern Widget label;
XmString str;
Dimension width;

XtVaGetValues (label,

XmNlabelString, &str,
XmNwidth, &width,

33

3 The Motif Programmin@Ndiebetting and Getting Widget Resources

NULL);

Notice that the value for XmNlabelString is an XmString, which is a Motif compound string. Almost all of the

Motif widget resources that specify textual information use compound strings rather than regular character strings.
The XmNvalue and XmNvalueWcs resources for Text and TextField widgets are the only exceptions to this policy.
When you are retrieving a string resource from a widget, make sure that you pass the address of a compound strin
not a character string, as in the following incorrect example:

extern Widget label;
char *buf;
Dimension width;

XtVaGetValues (label,
XmNlabelString, &buf, /* do not do this */
XmNwidth, &width,
NULL);

If you try to get a compound string resource value with a character string variable, the program still works, but the
value of the character string is meaningless. The correct way to handle a compound string resource is to retrieve it
with an XmString variable and then get the character string from the compound string using

XmStringGetLtoR(). See Chapter 19, Compound Strings, for more information.

There are some things to be careful about when you are getting resource values from a widget. First, always pas:
address of the variable that is being used to store the retrieved value. A value represented by a pointer is not co
into the address space. Instead, the routine sets the value for the address of the pointer to the position of the inte
variable that contains the desired value. If you pass an array, rather than a pointer to the array, the routine cannot n
its address. If you pass the address of a pointer, XtVaGetValues() is able to reset the pointer to the correct

internal value. The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is
longer needed. This situation occurs when a compound string resource is retrieved from a widget and when the

value of a Text widget is retrieved. These cases are discussed in Chapter 14, Text Widgets, and Chapter
Compound Strings. For values that are not represented by pointers, such as integers, the value is simply copied
example, the width value is an int, so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned by XtVaGetValues(). In the case of a
variable that is not a pointer, the value can be changed because the variable contains a copy of the value and doe
point to internal data for the widget. However, if the variable is a pointer to a string or a data structure, it does point
internal data for the widget. If you dereference the pointer and change the resulting value, you are changing
internal contents of the widget. This technique should not be used to change the value of a resource. To modi
resource value, you should use XtVaSetValues() with a defined resource name, as this routine ensures that the
widget redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from particular widget classes. Most
these functions correspond to the convenience routines for setting resource values. Many of the functions alloc
memory for the value that is returned. For example, XmTextGetString() allocates space for and returns a pointer
to the text in a Text widget. When a convenience function for retrieving a resource value is available, we genera
recommend using it. While we use the variadic functions almost exclusively in this book, you should know how to u:
the old—style argument lists needed by the Motif widget creation functions. The Motif convenience functions, ar
some Xt functions like XtCreateWidget() and XtCreateManagedWidget(), require you to set resources

using a separately—declared array of objects of type Arg. You pass this array to the appropriate function along w
the number of items in the array.

For example, the following code fragment creates a PushButton widget like the one in hello.c, but it uses a Mo

34

3 The Motif Programmin@Ndiebetting and Getting Widget Resources

convenience routine:

Arg args[5];
intn=0;

XtSetArg (args[n], XmNlabelString, label); n++;
button = XmCreatePushButton (toplevel, "pushme", args, n);
XtManageChild (button);

For all of the Motif convenience routines, the first argument is the parent of the widget being created, the second
argument is the widget's name, and the third and fourth arguments are the array of resource specifications and the
number of resources in the array. Since the class of the widget being created is reflected in the name of the
convenience function, it does not need to be specified as an argument to the routine. For example,
XmCreateLabel() creates a Label widget, while XmCreatePushButton() creates a PushButton widget.

Xt also provides some generic widget creation functions that use the old-style argument lists for specifying widg
resources. The following code fragment shows the use of XtCreateWidget():

Arg argsl[5];
intn=0;

XtSetArg (args[n], XmNlabelString, label); n++;
button = XtCreateWidget ("pushme",

xmPushButtonWidgetClass, toplevel, args, n);
XtManageChild (button);

With this routine, the name of the widget is the first parameter, the widget class is the second parameter, and the
parent is the third parameter. The fourth and fifth parameters specify the resources, as in the Motif convenience
routines.

The argument-list style of setting resources is quite clumsy and error—prone, since it requires you to declare an a
(either locally or statically) and to make sure that it has enough elements. It is a common programming mistake
forget to increase the size of the array when new resource/value pairs are added; this error usually results
segmentation fault.

In spite of the disadvantages of this method of setting resources, there are still cases where the convenience rou
may be useful. One such case is when the routine creates several widgets and arranges them in a predefinec
consistent with the Motif Style Guide. The argument-list style functions also can be useful when you have differe
resources that should be set depending on run—time constraints. For example, the following code fragment creat
widget whose foreground color is set only if the application knows it is using a color display:

extern Widget parent;
Arg args[5];

Pixel red;

intn =0;

XtSetArg (args[n], XmNlabelString, label); n++;
if (using_color) {

XtSetArg (args[n], XmNforeground, red); n++;
}

widget = XtCreateManagedWidget ("name", xmLabelWidgetClass, parent,
args, n);

35

3 The Motif Programmin@Ndiebetting and Getting Widget Resources

The old-style routines also allow you to pass the exact same set of resources to more than one widget. Since the
contents are unchanged, you can reuse the array for as long as it is still available. Be careful of scoping problems,
as using a local variable outside of the function where it is declared. The following code fragment creates a number
widgets that all have the same hard-coded resources:

static char *labels[] = { "A Label", "Another Label", "Yet a third" };
XmString label;

Widget widget, rc;

Arg argsl[3];

inti,n=0;

/* Create an unmanaged RowColumn widget parent */
rc = XtCreateWidget ("rc", xmRowColumnWidgetClass, parent, NULL, 0);

/* Create RowColumn's children —— all 50x50 with different labels */
XtSetArg (args[n], XmNwidth, 50); n++;
XtSetArg (args[n], XmNheight, 50); n++;
for (i = 0; i < XtNumber (labels); i++) {
xm_label = XmStringCreateLocalized (labels][i]);
XtSetArg (args[n], XmNlabelString, xm_label);
widget = XtCreateManagedWidget ("label", xmLabelWidgetClass, rc,
args, n + 1);
XmStringFree (xm_label);

}

/* Now that all the children are created, manage RowColumn */
XtManageChild (rc);

Each Label widget is created with the same width and height resource settings, while each XmNlabelString
resource is distinct. All other resource settings for the widgets can be set in a resource file.

To set resources in a resource file, you need to specify the names of the widgets, which in this case are all set to I:
It is perfectly legal to give the same name to more than one widget. As a result, a resource specification in a resol
file that uses a particular name affects all of the widgets with that name, provided that the widget tree matches
resource specification. For example, you could set the foreground color of all of the Labels using the followin
resource specification:

*rc.label.foreground: red

Other widgets in the application that have the widget name label, but are not children of the widget named rc, are
affected by this specification. Obviously, whether you really want to use the same name for a number of widgets
dependent on your application. This techniqgue makes it easier to maintain a consistent interface, but it also limits
extent to which the application can be customized.

We could have used the elements of the labels array as widget names, but in this example, these strings contal
spaces, which are "illegal" widget names. If you want to allow the user to specify resources on a per-widget ba:
you cannot use spaces or other non—alphanumeric characters, except the hyphen (=) and the underscore (), inw
names. If per—widget resource specification is not a concern, you can use any widget name you like, including NU
or the null string (™).

Even if a widget has an illegal name, the user can still specify resources for it using the widget class, as in 1
following example:

*rc.XmLabel.foreground: red

36

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

This resource setting causes each Label widget to have a foreground color of red, regardless of the name of the wi
(and provided that the resource value is not hard—coded for the widget). See Volume Four, X Toolkit Intrinsics
Programming Manual, for a discussion of appropriate widget names and further details on resource specification
syntax.

3.3.6 Event Handling for Widgets

Once we have created and configured the widgets for an application, they must be hooked up to application functi
via callback resources. Before we can talk about callback resources and callback functions, we need to discuss e\
and event handling. In one sense, the essence of X programming is the handling of asynchronous events. Event:
occur in any order, in any window, as the user moves the pointer, switches between the mouse and the keybo
moves and resizes windows, and invokes functions available through user interface components. X handles event
dispatching them to the appropriate application and to the separate windows that make up each application.

Xlib provides many low-level functions for handling events. In special cases, which are described later in this boc
you may need to dip down to this level to handle events. However, Xt simplifies event handling by having widge
handle many events for you, without any application interaction. For example, widgets know how to redra
themselves, so they respond automatically to WEXpose events, which are generated when one window is coverec
by another and then uncovered. These "widget survival skills" are handled by functions called methods deep in
widget internals. Some typical methods redraw the widget, respond to changes in resource settings that result fi
calls to XtVaSetValues(), and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events. This type of functionalit)
typically handled by action routines. Each widget defines a table of events, called a translation table, to whict
responds. The translation table maps each event, or sequence of events, to one or more actions.

Consider the PushButton in hello.c. Run the program and note how the widget highlights its border as the poin
moves into it, displays in reverse-video when you click on it, and switches back when you release the button. Wa
how the highlighting disappears when you move the pointer out of the widget. Also, notice how pressing tt
SPACEBAR while the pointer is in the widget has the same effect as clicking on it. These behaviors are the kinds
things that are captured in the widget's translation table:

<Btn1Down>: Arm()
<Btn1Down>,<Btn1Up>: Activate() Disarm()
<Btn1lDown>(2+): MultiArm()
<BtnlUp>(2+): MultiActivate()

<BtnlUp>: Activate() Disarm()
<Btn2Down>: ProcessDrag()
<Key>osfSelect: ArmAndActivate()
<Key>osfActivate: PrimitiveParentActivate()
<Key>osfCancel: PrimitiveParentCancel()
<Key>osfHelp: Help()

~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
<EnterWindow>: Enter()

<LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of action functions on the right
side. When an event specified on the left occurs, the action routine on the right is invoked. As we just described,
moving the pointer in and out of the PushButton causes some visual feedback. The EnterWindow and
LeaveWindow events generated by the pointer motion cause the Enter() and Leave() actions to be invoked.

37

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

As another example, when the first mouse button is pressed down inside the PushButton, the Arm() action routine
called. This routine contains the code that displays the button as if it were "pushed in," as opposed to "pushed o
When the mouse button is released, both the Activate() and Disarm() routines are invoked in that order. Here

is where your application actually steps in. If you have provided an appropriate callback function, the Activate()
action calls it. The Disarm() routine causes the button to be redrawn so that it appears "pushed out" again. In the X
syntax, events are specified using symbols that are tied fairly closely to pure X hardware events, such
ButtonPress or EnterWindow. For example, <Btn1lDown> specifies a button press for the first mouse button.
KeyPress events are indicated by symbols called keysyms, which are hardware-independent symbols that repres:
individual -keystrokes. Different keyboards may produce different hardware keycodes for the same key; the X ser
uses keysyms as a portable representation, based on the common labels found on the tops of keys.

Motif provides a further level of indirection in the form of virtual keysyms, which describe key events in a completel
device-independent manner. For example, osfActivate indicates that the user invoked an action that Motif
considers to be an activating action. An activating action typically corresponds to the RETURN key being pressed
the left mouse button being clicked. Similarly, osfHelp corresponds to a user request for help, such as the HELP o
F1 key being pressed.

Virtual keysyms are supposed to be provided by the vendor of the user's hardware, based on the keys on the keyb
but some X vendors also provide keysym databases to support multiple keyboards. As of X11 Releaase 5, th
Consortium provides a virtual keysym database in the file /usr/lib/X11/XKeysymDB. This file contains a number
predefined key bindings that OSF has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one step further and defines them in t
form of virtual bindings. Here's the translation table for the PushButton widget expressed using virtual bindings:

BSelect Press: Arm()
BSelect Click: Activate() Disarm()
BSelect Release: Activate() Disarm()

BSelect Press 2+: MultiArm()
BSelect Release 2+: MultiActivate() Disarm()

BTranserPress: ProcessDrag()
KSelect: ArmAndActivate()
KHelp: Help()

Examples of virtual bindings are BSelect, which corresponds to the first mouse button, and KHelp, which is

usually the HELP key on the keyboard. The rule of thumb is that any virtual binding beginning with a "B"
corresponds to a mouse button event, while any binding beginning with a "K" corresponds to a keyboard event. Mol
than one event can be bound to a single virtual keysym. For example, the Motif Style Guide permits F1 to be a help
key, so that key is also virtually bound to KHelp.

Virtual bindings can be specified by a system administrator, a user, or an application. One common use of virtt
bindings is to reconfigure the operation of the BACKSPACE and DELETE keys. On some keyboards, th
BACKSPACE key is in a particularly difficult location for frequent access. Users of this type of keyboard may prefe
to use the DELETE key for backspacing. These people may find the default operation of the Motif Text widge
annoying, since it does not allow them to backspace using their "normal" backspace key.

Since Xt allows applications and users to override, augment, or replace translation tables, many people familiar w
Xt try to specify a new translation for the DELETE key to make it act like a backspace. The translation invokes tt
action routine that backspaces in a Text widget. However, this approach is limited, in that it only works for a sing
Text widget. The Text widget has the following translation:

<Key>osfBackSpace: delete—previous—char()

38

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

The virtual keysym osfBackSpace is bound to delete—previous—char(), which is the backspace action.

Rather than changing the translation table to specify that <Key>Delete should invoke this action, a user can
redefine the virtual binding of the osfBackSpace keysym. A user can configure his own bindings by specifying the
new virtual keysym bindings in a .motifbind file in his home directory. The following virtual binding specifies that the
DELETE key is mapped to osfBackSpace:

osfBackSpace : <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the Text widget, as well as any
other widgets in the Motif toolkit that use the osfBackSpace keysym. The advantage of using virtual bindings is
that the interface remains consistent and nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource file, using the XmNdefaultVirtualBindings resource.
The resource can be specified for all applications or on a per—application basis. To map the DELETE key
osfBackSpace, use the following specification:

*defaultVirtualBindings: osfBackSpace : <Key>Delete 0 other bindings

The only difference between the syntax for the resource specification and for the .motifbind file is that the resource
specification must have a newline character (\n) between each entry. The complete syntax of Motif virtual bindings |
explained in Volume Six B, Motif Reference Manual.

Motif 1.2 includes a new client, xmbind, that configures the virtual key bindings for Motif applications. This action is
performed by the Motif Window Manager (mwm) or any application that uses the Motif toolkit at startup, so yo
really only need to use xmbind if you want to reconfigure the bindings without restarting mwm or a Motif applicatiol
Motif 1.2 also provides a new function, XmTranslateKey(), to translate a keycode into a virtual keysym. This
function allows applications that override the default XtKeyProc to handle Motif's virtual key bindings. Translations
and actions allow a widget class to define associations between events and widget functions. A complex widget, s
as the Motif Text widget, is almost an application in itself, since its actions provide a complete set of editin
functions. But beyond a certain point, a widget is helpless unless control is passed from the widget to the applicati
A widget that expects to call application functions defines one or more callback resources, which are the hooks
which an application can hang its functions. For example, the PushButton widget defines th
XmNactivateCallback, XmNarmCallback, and XmN-disarmCallback callback resources.

It is no accident that the callback resource names bear a resemblance to the names of widget action routine:
addition to highlighting the widget, the action routines call any application functions associated with the callbacks
the same name. There is no reason why a callback has to be called by an action; a widget could install a low—le
event handler to perform the same task. However, this convention is followed by most widgets.

the figure illustrates the event—handling path that results in an application callback being invoked. The widge
translation table registers the widget's interest in a particular type of event. When Xt receives an event that happe
in the widget's window, it tests the event against the translation table. If there is no match, the event is thrown away
there is a match, the event is passed to the widget and an action routine is invoked. The action routine may perfot
function internal to the widget, such as changing the widget's appearance by highlighting it. Depending on the des
of the widget, the action routine may then pass control to an application callback function. If the action is associat
with a callback resource, it checks to see if a callback function has been registered for that resource, and if st
dispatches the callback.

39

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

Xt Intrinsics

wait for

next event fl, ,l!

user prassas buttan 1

1

X Toolkit Infrins ics
Event Loop

daetermine the
widget that event
occurred in

Doss event
maikch widgst' s

No {rars lations ?

Widget

Widget's action
routine

Is acalback
regisiered?

Application

when dane,
ratumn control to Xt

Event—handling using action routines and callbacks

There are several ways to connect an application function to a callback resource. The most common is to ¢
XtAddCallback(), as demonstrated in hello.c:

void button_pushed();

XtAddCallback(button, XmNactivateCallback, button_pushed, NULL);

The first argument specifies the widget for which the callback is installed. The second parameter is the name of the
callback resource, while the third is a pointer to the callback function. The fourth argument is referred to as client
data. If this parameter is specified, its value is passed to the callback function when it is called. Here, the client date
NULL.

40

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

The client data can be a value of any type that has the same size as an XtPointer. An XtPointer is usually the
same as a char pointer; it is typically represented by a 32-bit value. You can pass pointers to variables, da
structures, and arrays as client data. You cannot pass actual data structures; the result of passing a data struct
undefined. You can pass variables of type int or char, but understand that you are passing the data by value, not b
reference. If you want to pass a variable so that the callback routine can change its value, you must pass the addre
the variable. In this case, you need to make sure that the variable is global, rather than local, since a local vari:
loses its scope outside of the routine that calls XtAddCallback().

The callback function itself is passed the widget, the client data, if any, and a third argument that is referred to as
data. The signature of a callback function can be expressed in one of two ways: using an ANSI-compliant functi
prototype or using the older style conventions of K&R C. The ANSI-style function declaration is as follows:

button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

In the strictest sense, declaring the types of the parameters to the function is the proper way to handle function
declarations and signatures. While this convention is good style and recommended for upwards compatibility, most
compilers today still understand the older style conventions:

button_pushed (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

Since this style is the least common denominator, your best bet is to use the second, more portable method. In the
course of the book, we make a habit of declaring client_data and call_data as XtPointers, even though

we usually know the actual types of the parameters being passed to the function. Before referencing these paramet
we cast the values to the appropriate types.

The third parameter in a Motif-based callback function is always a structure that contains information specific to t
widget class that invoked the callback function, as well as information about the event that triggered the callba
There is a generic callback structure, XmAnyCallbackStruct, as well as variations for specific widget classes and
callback resources. The XmAnyCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;
} XmAnyCallbackStruct;

The callback structure for the PushButton widget class, XmPushButtonCallbackStruct, is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;
} XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the chapter corresponding to the specific wi
type). The callback structures are also documented in the widget reference pages in Volume Six B, Motif Referer
Manual.

All of the callback structures contain at least the two fields found in XmAnyCallbackStruct. The reason field

always contains a symbolic value that indicates why the callback was called. These values are defined
/usrf/include/Xm/Xm.h and are usually self-explanatory. For example, when a callback function associated witl

41

3 The Motif Programming Model 3.3.7 The Event Loop

PushButton's XmN-activateCallback resource is called, the reason is XmCR_ACTIVATE. The different
values for reason make it easier to write callback routines that are called by more than one type of widget. By
testing the reason field, you can determine the appropriate action to take in the callback. Because the widget |
always passed to the callback function, you can also find out what widget caused the function to be invoked.

The event field contains the actual event that triggered the callback, which can provide a great deal of usefu
information. See Volume Four, X Toolkit Intrinsics Programming Manual, for information on how to interpret the
contents of an event. That subject is not discussed at length in this book, although our examples frequently use
events in callback structures to control processing.

3.3.7 The Event Loop

Once all of the widgets for an application have been created and managed and all of the callbacks have b
registered, it's time to start the application running. The final two function calls in hello.c perform this task:

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

Realizing a widget creates the actual window for the widget. When you call XtRealizeWidget() on the top—level
widget of an application (the one returned by the call to XtVaApplnitialize()), Xt recursively traverses the

hierarchy of widgets in the application and creates a window for each widget. Before this point, the widgets existed
only as data structures on the client side of the X connection. After the call, the widgets are fully instantiated, with
windows, fonts, and other X server data in place. The first Expose event is also generated, which causes the
application to be displayed.

The call to XtAppMainLoop() turns control of the application over to the X Toolkit Intrinsics. Xt handles the
dispatching of events to the appropriate widgets, which in turn pass them to the application via callbacks. T
application code is idle until summoned to life by user—generated events.

3.4 Summary

We've looked at the skeleton of a simple Motif program. Every application follows more or less the same plan:

« Initialize the X Toolkit Intrinsics.

 Create and manage widgets.

 Configure widgets by setting their resources.

 Register callbacks to application functions.

* Realize the widgets and turn control over to Xt's event loop.

How this skeleton is fleshed out in a real application is the subject of the next chapter. Chapter 3, Overview of the
Motif Toolkit, addresses the role of manager widgets in laying out a user interface, the use of dialog boxes and othe
popups for transient interactions with the user, the many specialized types of widgets available in Motif, and other
essential concepts. Once you have read that chapter, you should have a sufficient foundation for reading the remai
chapters in any order.

42

4 Overview of the Motif Toolkit

This chapter helps the reader understand the components of a real Motif application. It discusses how to handle
geometry management of primitive widgets within a manager widget, when to put components into the main windo
when to use dialog boxes and menus, and how to relate to the window manager. After reading this chapter,
programmer should have a solid overview of Motif application programming, and she should be able to read t
remaining chapters in any order.

In Chapter 2, The Motif Programming Model, we talked about the basic structure of an Xt—based program. W
described how to initialize the toolkit, create and configure widgets, link them to the application, and turn control ov
to Xt's main loop. In this chapter, we discuss the widgets in the Motif toolkit and how you can put them together
create an effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to any of the later chapters in
book that focus on individual widget classes. This chapter provides some insight into the design of the widgets an
general overview of the Motif style and methodology, which you may find useful when developing your owr
applications.

This chapter also describes all of the new features in Release 1.2 of Motif. If you are familiar with Motif 1.1 but nee
to get up to speed with Motif 1.2, you should read Section #smotif12. In this section, we summarize the new featu
and tell you where to find more information about them. We also describe all the changes made to the exam
programs in this book to make them up—-to—date with Motif 1.2. While Motif 1.2 is backwards—compatible with Motif
1.1, there are a number of functions and resources in Motif 1.2 that replace obsolete functions and resources in M
1.1.

4.1 The Motif Style

You don't build a house just by nailing together a bunch of boards; you have to design it from the ground up bef
you really get started. Even with a prefabricated house, where many of the components have already been built,
need a master plan for putting the pieces together. Similarly, when you are designing a graphical user interface fo
application, you have to think about the tasks your application is going to perform. You must envision the interfa
and then learn to use your tools effectively in order to create what you've envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical user interface. However, with
design schematics, the process of assembling the user—interface elements may become ad hoc or inconsistent. H
where the Motif Style Guide comes in. It presents a set of guidelines for how widgets should be assembled !
grouped, as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with the Style Guide. While we make recommendations fol
Motif style from time to time, this book is not a replacement for the Style Guide. There are many aspects of Mo
style that are not covered in detail here, as they involve the content of an application rather than just the mechar
On the other hand, the Motif Style Guide is not an instructional manual for the Motif toolkit. In fact, many of th
objects described in the Style Guide are not even widgets, but higher—level, more complex objects that are compc
of many widgets.

For example, the Style Guide describes an object called a MenuBar, which spans the top of the main window of
application. The MenuBar contains menu titles that, when clicked on, display PulldownMenus. The Moatif toolkit doe
not implement MenuBars or PulldownMenus as distinct widget classes, nor does the Style Guide make a

43

4 Overview of the Motif Toolkit 4 Overview of the Motif Toolkit

recommendations about how menu objects should be implemented. What the Style Guide does talk about (al
somewhat loosely) is the actions that can be taken by an item on a menu: it can invoke an application function, pof
a dialog box containing yet more options and commands, or display a cascading menu (also known as a pullri
menu).

The Style Guide also makes recommendations about the menus that an application should provide. For example,
applications should have a File menu that provides items such as an Exit button to exit the application and a S:
button to save file. It also specifies details of presentation, such as that you should provide an ellipsis (...) as part c
the label for a menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guidelines of the Motif Style Gui
brings up some interesting points, particularly in relation to some of the underlying principles of the X Toolki
Intrinsics. In Xt, a widget is envisioned as a self-contained object that is designed to serve a specific, clearly—defir
function. Many of the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common interface objec
are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound objects out of several widgets :
then expecting you to treat them as if they were a single object. For example, Motif provides the ScrolledText a
ScrolledList objects, which combine a Text or List widget with a ScrolledWindow widget, which in turn automatically
manages horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general-purpose widget that can be configured to appeal
several guises. There is no MenuBar widget class and no PulldownMenu widget class. Instead, the RowColu
widget, which also serves as a general-purpose manager widget, has resources that allow it to be configured as ¢
a MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design to be a breach of Xt's desi
goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, and PulldownMenus as distinct objec!
the Motif toolkit provides convenience creation functions. These routines make it appear as though you are creat
discrete objects when, in fact, you are not. For example, XmCreateMenuBar() and
XmCreateSimplePulldownMenu() automatically create and configure a RowColumn widget as a MenuBar and

a PulldownMenu, respectively. There are also convenience routines for creating various types of predefined dia
boxes, which are actually composed of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user-interface objects while hiding their implementatic
However, since Motif is a truly object—oriented system, it behooves you to understand what you're really dealing wi
For example, if you want to use resource classes to configure all MenuBars to be one color and all PulldownMer
another, you cannot do so because they are not actually distinct widget classes. The class name for both objec
XmRowColumn.

In the remainder of this chapter, we look at Motif user—interface objects from the perspective of both the function
object illusion and the actual widget implementation. In the body of the book, we use the Motif convenience routin
for creating most compound objects, but stick to the underlying Xt routines for creating simple widgets or gadge
With the compound objects, we show you how to pierce the veil of Motif's convenience functions and work directl
with the underlying widgets when necessary. the figure shows the entire class hierarchy of the Motif widget set.

44

4 Overview of the Motif Toolkit

4.2 Application Controls

AronButionGadgsl

LabelGadget

SeparatiGadget
d

Lab

CascadzBulinGadga1

PushButionGadget

TogglButinGadga1

isl

Scrolbar

Separator
Texd

TexiFidd

il

Composite

|Cmst|a'nl H Ianagsr I.—

BulsfrBoard

Frama

SdeciorBox

Scae
—| ScroledWindow H ManWindow .

OvenidaShdl MenuShdl

KEY

D - Motif
D - Xt Intrinsics

FileSalacionBox

ApplicationShl

DidogShell

The class hierarchy of the Motif widget set

4.2 Application Controls

We begin by taking a closer look at the Motif user—interface components with which the user typically interacts. The
we examine how the manager widget classes are used to arrange the more visible application controls. And finally,
explore the use of all of these objects to create functional windows and dialogs that make up a real application.

In many ways, application controls are the heart of a graphical user interface. Rather than controlling an application
typing commands, the user is presented with choices using graphical elements. The user no longer needs to reme
the syntax of commands, since her choices are presented to her as she goes along. As we've discussed, some of |
application controls (such as menus) are compound objects assembled by convenience routines. Others are sir

45

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

single—purpose widgets that you can create directly.

The widgets in this latter group are collectively referred to as primitive widgets —— not because they are simple, |
because they are designed to work alone. The contrast is not between primitive and sophisticated widgets, but betv
primitive and manager widgets. Some of the primitive Motif widget classes have corresponding gadget classes. T
following sections describe the different types of primitive application controls available in the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadgets. Because an understanc
of these objects relies on an understanding of the primitive widgets, as well as the Motif manager and shell widge
we are going to postpone discussing compound objects until later in the chapter.

4.2.1 The Primitive Widget Class

The Primitive widget class is a superclass for all of the Motif primitive widgets. This widget class is a metaclass;
serves only to define certain common behavior used by all its sub-classes, so one never instantiates a widget dire
from the Primitive class. This statement is somewhat like saying that hammer is a class of object, but that you ne
really have a -generic hammer. You can only have a specific type of hammer, like a claw hammer, a ball pe
hammer, or a sledge hammer. A claw hammer has the prongs in the back behind the hammer-head that allow yc
pull nails out of a wall; a ball peen hammer has a round corner where the claw would be otherwise be; a slec
hammer is the large, heavyweight hammer used to drive thick nails through concrete or to destroy things.

Just as all hammers have particular characteristics that qualify them as hammers, the Primitive widget class prov
its subclasses with common resources such as window border -attributes, highlighting, and help with keyboz
traversal (so the user can avoid the mouse and navigate through the controls in a window using the keyboard).
actual widget classes that you use are subclassed from the Primitive class, as shown in the figure.

Core [] - Motif
] - xtintrinsics
—I AmronBution L
CascadaBuiin |
. Labd
Primitive
- DraarBution L
= L |
PushBution k
= ScrolBar |
TogakBution
e
TexiFidd

The Primitive widget class hierarchy

The Primitive class itself inherits even more basic widget behavior from the Xt—-defined Core widget class, whic
establishes the basic nature of "widgetness."” The Core class provides widgets with the capability to have windows
background colors, as well as translations, actions, and so on. You could actually use a simple Core widget a:
instance and define your own translations and action routines, although this technique is not used frequen
Complete details are provided in Volume Four, X Toolkit Intrinsics Programming Manual. The Label widget
provides a visual label either as text or as an image in the form of a Pixmap. The text of a Label is an XmString, or
compound string, not a character string (char*). A compound string can be oriented from left-to-right or

46

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

right—-to—left and it can also contain multiple lines and multiple fonts. Chapter 19, Compound Strings, discusse
functions that manipulate compound strings, as well as functions that convert between character strings and compc
strings.

The Label widget does not provide any callback routines, since it does not have any specified behavior. Using Xt,
could install event translations and action routines to make a Label respond to user input, but the Label widget is
intended to be used this way. It is only meant to be used to display labels or other visual aids. In Motif 1.2, instan
of Label and all of its subclasses are automatically registered as drag sources for drag and drop operations by
toolkit.

Label widgets are described in detail in Chapter 11, Labels and Buttons. the figure displays a single Label widg
with multiple lines and multiple fonts.

= multi_line a |
This is a label
that contains three

|zeparate fonts and lines. |

J

A Label with multiple lines and fonts

The PushButton widget supports the same visual display capabilities as a Label, since it is subclassed from Labe
addition, the PushButton provides resources for the programmer to install callback routines that are called when
user arms, activates, or disarms the button. The PushButton also displays a shadow border that changes in appes
to indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. When the pointer moves into the bu
its border is highlighted. When the user actually selects the button by pressing the first mouse button on it, the but
appears to be pushed in and is said to be armed. The user activates a PushButton by releasing the mouse button
the button is armed. PushButton widgets are also covered in detail in Chapter 11, Labels and Buttons. the figt
shows some examples of PushButtons.

r
E Cancell Helpl

PushButton widgets

The DrawnButton widget is similar to a PushButton in its functionality and its three—dimensional appearanc
However, the DrawnButton is used when an application wants to draw the text or image directly into the widge
window, rather than have the widget handle the drawing. If the image is dynamic and changes frequently during
course of an application, you may want to handle the drawing yourself. The DrawnButton provides additional callba
resources that are called when the button is resized or exposed and additional ways to draw an outlined border.
DrawnButton widget is discussed in Chapter 11, Labels and Buttons. the figure shows some DrawnButtons.

47

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

DrawnButtons widgets

The ToggleButton widget displays text or graphics like a Label widget, but it has an additional indicator graphic |
square or diamond shape) to the left of the label. The indicator shows the state of the ToggleButton: on or off. Wt
the ToggleButton is on, the indicator is colored and appears to be pushed in. When the button is off, the indica
appears to project outward. The ToggleButton provides a additional resource for specifying a callback routine tha
called when the user changes the state of the ToggleButton.

One common use of ToggleButtons is to set the application state. In this case, the callback routines typically
simple Boolean variables internal to the application. ToggleButtons can also be arranged in two different kinds of
groups. In one configuration, known as a RadioBox, only one button in the group of buttons can be chosen at a til
The other configuration, a CheckBox, allows the user to select any number of buttons. When ToggleButtons «
grouped as a RadioBox, the indicators are diamond-shaped; otherwise, they are square-shaped. ToggleBu
widgets are described in detail in Chapter 11. the figure shows the two different ways that ToggleButtons can
grouped.

J Une o Nix + Une v Bix

T Two | Seven v Twe | Seven

I Three |_| Eight + Three - Eight

J Four _| Nine +w Four -, Nine

A Five _| Ten +w Five , Ten

Check Toggles Cheek Toggles

Chec kBox RadioBox

ToggleButtons in a CheckBox and a RadioBox

The CascadeButton widget is a special kind of button that is used to pop up menus. A CascadeButton can only be
as a child of a RowColumn widget, such as: in a MenuBar as the title of a PulldownMenu, in a PulldownMenu pane
an item that has a cascading menu associated with it, or as the button in an OptionMenu. The menu that is posted
CascadeButton is not a part of the widget itself; the menu is associated with the button through a resource
CascadeButton merely provides the label and other visual aids that support the appearance that a menu can pc
from the object. Even though the CascadeButton widget class is subclassed from Label and could inherit all of
functionality, Motif imposes restrictions on the labels that a CascadeButton can display. CascadeButton labels car

48

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

contain multiple lines or multiple fonts. Because CascadeButtons are typically used in menus, they do not disp
border shadows like other buttons. They do have similar highlighting behavior when selected, howeve
CascadeButton widgets are explained in both Chapter 4, The Main Window, and Chapter 15, Menus. Despite t
similarity in its name, the ArrowButton widget is not subclassed from Label like the other button widgets. Like th
remaining widgets described in this section, it is subclassed directly from the Primitive widget class. Th
ArrowButton widget contains an image of an arrow pointing in one of four directions: up, down, left, or right. Wher
the user selects this widget, the ArrowButton provides visual feedback giving the illusion that the button is pressec
and invokes a callback routine that an application can use to perform application—specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is easy enough to provide
arrow pixmap for a PushButton. Since directional arrows are a common user-interface element, the ArrowButton
provided as a separate widget class for -simplicity. ArrowButton widgets are covered in detail in Chapter 11, Labe
and Buttons. the figure shows the four variations of the ArrowButton widget.

ArrowButton widgets

The List widget provides a mechanism for the programmer to make a list of text items available to the user f
selection. The user selects items from a List using the mouse or the keyboard. The List widget allows you to spe
whether the user can select a single item or multiple items. While List is a Primitive widget, it is typically created ¢
part of a ScrolledList compound object using a Motif convenience function. The advantage of the ScrolledList obje
is that it provides a ScrollBar when the List grows bigger than the size of its visible area. In Motif 1.2, instances of tl
List widget are automatically registered as drag sources for drag and drop operations by the toolkit. We explore
List widget in detail in Chapter 12, The List Widget. the figure shows a List widget in context with other interface
-elements.

49

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

Folder Me<<age View Fimd Sorl Composxe Oplions Layonel Helpa

TFolder; ol I 20 tatal, 7 now, 0 unmmad, 7 doleted

Mes=ages: | .11

| New Arrivals

-

1 - Esren Lewis oct 24 5:42pn (33) bullo

2 dorosks@osf. org oct 28 3:27¢n (43) mum sa2cfault

3 ajrzan Mys Hee 12 5:22rn (B3) He: some thought zhout
~ Daved Flanzgar Feb 16 1U:1¥zn (71) burldicg mokaz 2 L. 2
L 18 3

- Liz 3radlcy Fch 3:Ulgn (23) Evcrcot kalc

File=n Kiane w2 24 ¥l AA punge . onerling
ATy SLoense X . Tur=il4y dyain
Zaciakice com ' : stuff

(23) Mozif sampls ckaptecs

A List widget in an application

The ScrollBar widget is one of the more intuitive user—interface elements in the Motif toolkit. ScrollBars are almos
always used as children of a ScrolledWindow widget. When the contents of a window are larger than the viewi
area, a ScrollBar allows the user to scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a number of callback resources tt
allow you to control its operation. ScrollBar widgets are discussed in Chapter 9, ScrolledWindows and ScrollBar:
the figure shows both vertical and horizontal ScrollBars.

ek Strmas ___— Vertical ScroliBar

nailenpty nailenptymsk

nainicor,xom

™ Horizantal SerofiBar

Horizontal and vertical ScrollBar widgets in a ScrolledWindow

The Separator widget is used as a visual aid to separate adjacent items in a display. A Separator appears as
between the objects it is separating; it can be oriented vertically or horizontally. Separators can be used in menu
separate menu items, in dialog boxes to -separate discrete areas of control, and at various points in an interfac
purely aesthetic -reasons. The Text widget is a complete text editor contained in a widget. The Text widget provic

50

4 Overview of the Motif Toolkit 4.2.2 Gadgets

resources to configure the editing style of the widget, as well as callback resources that allow text verification. T
widget can be configured as a multiline text entry area or as a single-line data entry field. The TextField widget cle
is available as a somewhat lighter—weight text entry area. The TextField widget is limited to a single-line, but in ¢
other respects there is little difference between the two classes. In Motif 1.2, instances of the Text and TextFi
widgets are automatically registered as drag sources and drop sites for drag and drop operations by the toolkit.

The Text and TextField widgets can be used in many different ways to support the text entry requirements of
application. The two widgets are described in detail in Chapter 14, Text Widgets. the figure shows an application tt
uses various forms of the Text widget.

) L
—| editor [=]
File BEdit Scarch |
Swoarch Pattern: | xmud Replace Pattern: |i
HUUT [1) USEE. SCIDIANDS HUUT 1) &1
NZHE
ek - inzqe displayer foc X
SYNCP3I5
| 1. tzle | moc_ick| | goomctcy gecn| | Jdasploy
Jdisolay] [-rew] [-std <naptyped] [-c=u] [-wis {viz-type-oI-
] [Fhelp] C=iw] [=plen=s nomlien | =Ty enlo] [=hg el]
A
= -
7 round 2 occucrecces. 1

Text and TextField widgets

4.2.2 Gadgets

Another set of application controls is provided in the form of gadgets. There are gadgets that are equivalent to man
the primitive widgets: LabelGadgets, SeparatorGadgets, PushButtonGadgets, CascadeButtonGadge
ToggleButtonGadgets, and ArrowButtonGadgets. The appearance and behavior of the gadgets is mostly identice
that of the corresponding widgets. A further understanding of how gadgets work depends on an understanding of
manager widgets that support them, so we are going to return to this topic later in the chapter.

51

4 Overview of the Motif Toolkit 4.3 Application Layout

Core O - Motit
- Xtintnnsics
oot | _'EI

1
AronButionGadgst
RectObj —{ Gadget CascadeBulknGados! |
§ LabdGadgsi
| i PusBuionGadgst |
; » SeparabrGadget
WindowCbj g ToggkButnGadost |

..................................

The Gadget class hierarchy

The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class is a metaclass that is ne
instantiated. However, gadgets are not widgets. The Gadget class is subclassed from the RectObj class, not fron
Core widget class. the figure shows the class hierarchy for gadgets.

4.3 Application Layout

While the controls are the most obvious part of a graphical user interface, these elements alone do not make
effective interface. A random arrangement of buttons or a collection of nested menus can make an applicatior
obscure and as difficult to use as one with a command-line interface. The arrangement of the controls in
application makes all the difference.

To help you lay out your application, Motif provides you with a set of manager widgets. You can think of manage
widgets as boxes in which you can put things. These boxes, however, can grow or shrink as necessary to provide
best fit possible for the items that they contain. You can place boxes inside of other boxes, whether or not they con
other items. By using different size boxes, you can organize things in many different ways.

Manager widgets are so named because they manage the size and position of other widgets. The relationship bet
a manager widget and the widgets that it manages is commonly referred to as the parent—child model. The mane
acts as the parent, and the other widgets are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefulness depends on their vis
appearance and interaction with the user, manager widgets provide no visual feedback and have few callback rout
that react to user input. Manager widgets have two basic purposes: they manage the sizes and positions of 1
children, and they provide support for gadgets. Like other widgets, manager widgets have windows, they can rece
events, and they can be manipulated directly with Motif and Xt functions. You can draw directly into the window of
manager widget, look for events in the widget, and specify resources for it.

There are many manager widget classes, each of which is tuned for a particular kind of widget layout. A mana
widget can manage other manager widgets, as well as primitive widgets like Labels and PushButtons. In fact,
layout of an application is typically a kind of tree structure. As discussed in Chapter 2, The Motif Programmin
Model, the top of the tree is always a shell widget like that returned by XtVaApplnitialize(). Shell widgets are
composite widgets that can only have a single managed child. This child is usually a -general-purpose mana
widget. This manager contains other managers and the primitive widgets that compose the user interface for a wint
in an application.

52

4 Overview of the Motif Toolkit 4.3 Application Layout

the figure shows the all of the different manager and primitive widgets that make up the displayed dialog box. T
parent—child relationships between the widgets in this dialog box are illustrated in the tree structure shown in t

figure. Although the dialog box is composed of many different components, it appears to the user as a sing
conceptually focused user—interface object.

RowCdurm
LabeGadgai

ScroledVindow
RowCdurm

ScrolBar
Texi widget
LabdGadosd
List

RowCaurm (RadicBax)
RowCdurm

53

4 Overview of the Motif Toolkit 4.3.1 The Manager Widget Class

The layout of a dialog box

PanadWindow
LabelGadgat
Fom . LabeGadgai
RowCdurm
{horizontal) Toxd
LabelGadgst
(picurz)
TogalButinGadga1
TogalButinGadg=1
RowCdurm
RowColumn =1 RadioBax)
— (veriical) p— () TogalButinGadgs1
LabelGadgst
| LabsGadgsi
RowCdurm
=1 (horizontalj Texd
—| ScroladWindow ScrolBar
—| LabdGadgai ScrolBar
List
PushBution
Fom }— J
PushBution
»
PushBution

The widget hierarchy of a dialog box

4.3.1 The Manager Widget Class

As with the Primitive widget class and the Gadget class, the Manager widget class is a superclass for all of the M
manager widgets. The Manager class is another metaclass. You never create an instance of a Manager widget
create an instance of one of its subclasses. The actual widget classes that you use are shown in the figure.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from the Xt Composite class. T
Composite widget class defines the basic characteristics of widgets that are able to manage the size and positic
other widgets. Xt uses the general term -composite widget for any widget with this capability. The Constraint cla
adds the capability to provide additional resources for the widgets that are being managed. These resources cons
the position of the widgets. They can be thought of as hints about how the widgets should be laid out.

54

4 Overview of the Motif Toolkit 4.3.1 The Manager Widget Class

Core [- Motif
l [- xtintrinsis

Form L

- SdacforBox
| -l DraxingAr=a l
FileSalacionBox
- M _mx
Corstraint | Frama | 93! l
l -l PanadiVindow l
IManager
Scas

{ ScoladWindow e MainWindow

—

The Manager widget class hierarchy

Motif provides a number of general-purpose manager widgets that allow the programmer to manage the size
arrangement of an arbitrary number of children. In some ways, the art of Motif programming is the design of effecti
widget layouts, using these particular manager widgets. Motif also provides some narrowly—focused manager widgs
such as certain dialog classes, that can almost be treated as if they were single user—interface components. T
widgets create and manage their children with minimal help from an application. We sometimes refer to these widg
as compound objects, since they include both a manager widget and one or more children. This section describe:
different manager widgets briefly; a more detailed description of the widgets is given in Chapter 8, Manager Widget

The DrawingArea Class

The DrawingArea widget provides an area in which an application can display graphics. Callback routines c:
be used to notify the application when expose and resize events take place and when there is input from the
keyboard or mouse. The DrawingArea can also be used to manage the geometry layout for child widgets, bt
its functionality in this area is quite limited.

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or graphics. If the data that is being
viewed is larger than the ScrolledWindow, ScrollBars allow the user to view the entire contents of the windo
interactively.

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main window of an application. It is
specifically tuned to pay attention to the existence of a MenuBar, a command area, a message area, a work
region, and ScrollBars, although all of these areas are optional.

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all of the manager widgets. As its
name suggests, the widget lays out its children in rows and columns. The RowColumn widget is used by
many different parts of the toolkit to implement compound objects like MenuBars, PulldownMenus,
CheckBoxes, and RadioBoxes.

The Frame Class

The Frame widget provides a three—dimensional border for a widget that does not normally have a border. |
can also be used to enhance the style of the border for a widget that already has a border. In Motif 1.2, a

55

4 Overview of the Motif Toolkit 4.3.2 Geometry Management

Frame widget can have two children: a work area and a title. In Motif 1.1, Frame can only have a work area
child. In either case, the work area child can be a manager widget that contains many other children.
The PanedWindow Class

The PanedWindow widget manages its children in a vertically tiled format. Its width always matches the
widest widget in its list of managed children; the widget forces all of its children to stretch to the same width
as that widget. Each pane in a PanedWindow contains a child widget; every pane has an associated sash (¢
grip) that allows the user to change the height of the pane interactively. Resizing a pane with the grip can
cause the widgets in other panes to change size.

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the widgets that it manages. The
widget acts like a real bulletin board, in that an application pins a widget on the bulletin board, and it sticks
where it is placed. The BulletinBoard does impose margins and has a resource that controls whether or not
children can overlap. However, when a BulletinBoard is resized, it does not move or resize its children base
on its new size. The BulletinBoard is useful mostly for the layout of dialog boxes and other windows that are
rarely resized. The predefined Motif dialog widget classes use BulletinBoard widgets for this reason.

The Form Class

The Form widget provides a great deal of control over the placement and sizing of the widgets it manages. /
Form can lay out its children in a grid—like manner or it can allow its children to link themselves to one
another in a chain-like fashion. Form uses constraint resources to specify how children are resized and
positioned relative to each other and the Form as a whole.

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance and functionality to a ScrollBar. A
Scale is typically used to provide feedback to the user about the value of a state variable in an application.
This widget class is not intended to be used as a general manager. The Scale creates and manages its owr
widgets, which are needed to construct the Scale object. The only children that you can add to a Scale widg
are Label widgets that represent tick marks.

4.3.2 Geometry Management

The process by which a manager widget controls the layout of its children is known as geometry management. A ¢
widget is always placed within the boundaries of its parent. A child cannot move or resize itself without requestir
permission from its parent, which can deny the request. The manager, acting as the parent, can even force the
into an arbitrary size or position. However, like any good parent, a manager widget should be fair at all times and |
deny reasonable requests made by its children. As you might expect, geometry management can be quite compls
an application with several levels of managers.

As an example, consider adding a new item to a List widget. In order to display the new item, the List widget mu
grow vertically, so it requests a new size from its manager parent. If that parent can accomodate the larger size,
has another mechanism for satisfying the request, such as ScrollBars, it can approve the request. However, if
manager itself must grow to honor the List widget's request, it has to negotiate with its own parent. This chain react
may go all the way up to the shell widget, in which case the shell must communicate with the window manager ab
the new size. If the window manager and the shell agree to the new size, the acknowledgement filters back dc
through the widget tree to the List widget, which can now grow to its requested size. If any of the composite widge
in the hierarchy refuse to resize, the List widget's request is either denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely disputes among children ab
resizing negotiations or positional boundaries. Children usually go where their managers put them and make very

56

4 Overview of the Motif Toolkit 4.3.3 Gadget Management

requests of their own. One exception is a RowColumn widget that is acting as a MenuBar, since it must be situate
the top of the window, and it must span the window horizontally. ScrollBars are another possible exception, since tt
are typically positioned at the edges of ScrolledWindow widgets.

So, how do children request geometry changes from their parents? The answer to this question is rather complice
since the X Toolkit Intrinsics supports a large selection of functions that enable two—way communication abo
geometry management. For example, a child can use XtMakeGeometryRequest() to request permission to be
made a specific size or to be placed in a particular location. A parent can use a function like XtQueryGeometry()
to give a child the opportunity to announce its preferred geometry.

Some of these functions and methods are described in Chapter 8, Manager Widgets, but a detailed treatmen
custom geometry management techniques is beyond the scope of this book. These functions are mostly used b
internals of composite and constraint widgets. See Volume Four, X Toolkit Intrinsics Programming Manual, for ¢
more detailed discussion of geometry management technigues.

In the Motif toolkit, geometry management cannot work without cooperation. The easiest way for a child to coopere
with its parents and siblings is simply to comply with whatever layout policy is supported by its manager widge
parent. A child should not try to force itself into a size or a position that is not supported by its parent. Each of tl
manager widget classes described above is designed to support a specific layout style. For example, the RowCol
widget lays out its children in rows and columns, the Form widget allows its children to specify positions relative t
other widgets within the Form, and the PanedWindow widget lets its children specify their desired maximum ar
minimum heights.

Manager widgets use constraint resources to support their layout policies. Constraint resources are defined by
Constraint widget class, which is a superclass for the Manager widget class and thus all of the Motif manager widg
Unlike other resources, constraint resources apply to the children of a manager widget, not to the manager its
Examples of constraint resources include maximum and minimum heights, relative sizes and positions, speci
positional constraints, and even absolute x,y coordinates. While these examples deal exclusively with size ¢
position, constraint resources can be used for any arbitrary information that needs to be kept on a per—child basis.

Here's how constraint resources work. When a manager needs to size or position its children, it deals only with
children that are managed; unmanaged children are ignored in geometry management negotiations. For each man
child, the manager examines the child's constraint resources. Depending on the constraints that are specified
manager either enforces the geometry changes or negotiates with its own parent to see if it can comply with
changes. This process uses an extra internal data structure for each child. The data structure stores the constraint
are used by the widget's parent to aid it in geometry management.

4.3.3 Gadget Management

In addition to handling geometry management, manager widgets are responsible for their gadget children. In orde
understand how managers support gadgets, we need to define more clearly what a gadget is. Every widget has its
X window, which simplifies many aspects of programming, since each widget can take responsibility for repaintin
itself, selecting its own events, and in general being as self-sufficient as possible. Historically, however, windoy
have been perceived as heavyweight objects. The concern is that system performance will be degraded i
application uses too many windows. Since an application with a graphical user interface frequently uses hundred:
widgets, or perhaps even thousands for a very large program, the performance issue is an important one.

Gadgets, or windowless widgets, were originally developed as a part of Motif. They were added to Xt as of X1
Release 4. Motif provides gadget versions of many common primitive widgets, such as PushButtons and Labels. L
widgets, gadgets can be created using either Motif convenience functions or XtCreateManagedWidget(). While

the widget and gadget versions of an object are functionally very similar, there are some small but importa

57

4 Overview of the Motif Toolkit 4.3.4 Keyboard Traversal

differences.

Because a gadget does not have its own window, it is entirely dependent on its parent, a manager widget, for its b
functionality. For example, the manager must handle redrawing the gadget on exposure, highlighting it as a resul
keyboard traversal, and notifying it of event activity. Without a window, a gadget has no control over the colors that
uses or any other window-based attributes normally associated with a widget. For this reason, gadgets can onl
used in managers that support them. How closely a gadget emulates its widget counterpart is largely dependent ol
capabilities of the manager widget parent.

The Motif Manager class limits the colors that can be used by gadgets. A gadget uses the same backgrot
foreground, and shadow colors as its manager widget parent. These restrictions are not inherent in the Xt Compc
widget class or in Xt—based gadgets; they are specific to the Motif Manager and Gadget classes. Hypothetically,
could write a Composite widget that allows its gadget children to specify their own background colors. Such a widc
would have to paint the area of its window occupied by the gadget with the specified color to give the user tl
impression that the gadget is indeed a separately—colored widget.

You can use the color restrictions of the Motif managers and gadgets to provide a consistent interface for yc
application. For example, by using PushButton gadgets instead of PushButton widgets, you can ensure that all of
buttons in particular window are the same color. In this situation, the user can specify color resources for the mane
widget, but not the PushButtons themselves.

Although gadgets were originally developed to improve performance, it is no longer necessary to automatically u
them if you are looking for performance improvements in an -application with many widgets. In both X11 Release
and Release 5, windows have become substantially lighter-weight objects than they were when gadgets were
developed. If anything, gadgets are worse than widgets at this point from a performance perspective because the N
managers take a very simplistic approach to the way they handle events for gadgets. A manager tracks all events,
MotionNotify, whether or not its gadgets have expressed interest in the events. As a result, gadgets typically

generate a great deal of network traffic. X terminal users are especially likely to notice a network performance dre
There are some other complications that surround the use of gadgets, which we discuss when they come up ir
course of this book.

4.3.4 Keyboard Traversal

Keyboard traversal is a mechanism that allows a user to navigate through the components in a user interface u:
only the keyboard. The Motif Style Guide specifies that all applications must support keyboard traversal for :
application functionality. Support of keyboard traversal is important because not every display provides a mouse
other pointing device. For some applications, such as data entry, using keyboard traversal is more convenient t
using a pointing device. All of the Motif widgets support keyboard—based navigation.

Keyboard traversal is based on the concept of a tab group. A tab group is a group of widgets that are related for
purpose of keyboard traversal. For example, all the items in a menu are considered a tab group, since they are gro
together and perform related functions.

At any given time, only one component on a display can be "listening" to the keyboard for keyboard events. Tl
widget that is listening to the keyboard is said to have the keyboard focus, or input focus. The widget that has
input focus identifies itself by displaying a location cursor. The location cursor is often a highlighted border the
surrounds the widget. A user can move the input focus to another widget using the mouse or the keyboard.

The user can move the keyboard focus between items in the same tab group using the arrow keys. When the user
the item that she wants, she can activate it with the RETURN key or the SPACEBAR. If the user wants to move frc
one tab group to another, she uses the TAB key. (In a multiline Text widget, CTRL-TAB is used because otherwi

58

4 Overview of the Motif ZdolRititting Together a Complete Application

there would be no way to insert a tab character.) To traverse the tab groups in reverse, the SHIFT key is used witl
TAB key. Keyboard traversal wraps from the last item to the first item, both within a tab group and between te
groups.

Although keyboard traversal is not completely controlled by manager widgets, they do play a pivotal role i
implementing it. A manager widget is typically initialized as a tab group; its primitive widget children are members ¢
the tab group. The Text and List widgets are exceptions to this rule. These widgets are set up as their own tab gro
so that keyboard traversal can be used to move among the text in a Text widget or the items in a List widget. Withi
tab group, there is no sense of a manager—within—-manager structure. The widget hierarchy is flattened out so th
appears to the user that all of the controls in a window are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushButton has the keyboard focus
the user presses the TAB key, the internals of the PushButton widget are responsible for directing the focus to the |
tab group. Manager widgets play a key role in keyboard traversal because they are responsible for the keyboard e\
that take place within gadgets. If an event occurs within a PushButton gadget, its manager parent is responsible
directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult, it is automated by the Mot
toolkit and does not require application intervention. However, the toolkit does provide mechanisms that allow you
control keyboard navigation. There are resources that allow you to specify widgets that are tab groups, widgets 1
are in tab groups, and widgets that do not participate in keyboard navigation. There are also functions that allow \
to specify explicitly the direction of keyboard traversal. Fortunately, such fine—tuning is rarely necessary.

4.4 Putting Together a Complete Application

Managers and primitive widgets provide the basic tools with which you can build a graphical user interface from ti
ground up. Motif also provides several components that address the large—scale organization of an application.
specialized MainWindow manager widget is intended to be used as the organizing frame for an application. Motif a
provides different types of menus and dialog boxes that can be used to organize application functionality.

Since an application is always used in conjuction with a window manager, we need to discuss the role played by
window manager. In the course of this discussion, we also need to take a closer look at shell widgets, since t
provide the communication link between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. Motif provides routines that cacl
pixmaps so that they can be reused throughout an application. The three-dimensional appearance of M
components is implemented using a variety of color resources. It is important to understand these resources so the
3D shadows are an effective part of the user interface.

4.4.1 The Main Window

Every application is different. A word processor, paint program, or spreadsheet typically has a single main work ar
with controls taking on a peripheral role, perhaps in PulldownMenus. More sophisticated programs, on the other ha
may have several main work areas. For example, an electronic mail program may have a work area in which the |
reviews and selects from a list of incoming messages, another where she reads and responds to messages, a
another where she issues commands to organize, delete, or otherwise affect groups of messages. Still o
applications, such as data—entry programs, don't really have a separate work area. The work area is really ju
collection of controls, such as CheckBoxes and text entry areas, that are filled in by the user.

59

4 Overview of the Motif ZdolRititting Together a Complete Application

It is quite conceivable that an application could provide multiple windows for performing different tasks. Fol
example, an order entry program might use one window for looking up a customer record, another for checking st
on hand, and yet another for entering the current order. Motif allows for the creation of multiple top—level applicatic
windows, as well as transient dialog boxes that ask for additional information or confirmation before carrying out
command.

Nonetheless, every application has at least one main window. The main window is the most visible window in
application. It is the first window the user sees and also the place where the user interacts with most applicat
functionality. No matter how small or large an application may be, there needs to be a focal point that ties it :
together. As a program grows more complex, the main window may grow more abstract and perform fewer functio
but it always exists. In a sophisticated application, the main window is transformed into a hub where the user sta
finishes, and returns again and again as she goes from one function to the next.

The Motif Style Guide suggests a particular layout for the main window. Applications should use this layout unle
they have a compelling reason not to. The recommended layout is shown in the figure.

MenuBar
Workarea —___ _ Scrolars
command:; ——— Command araa
——— Massage area
Kessaqge:

Recommended layout for a main window

A main window should have a menu bar across the top, with the work area immediately below it. The work ar
usually contains the main interface object of the application. For example, a paint or draw application might provide
DrawingArea widget as a canvas, an electronic mail application might provide a ScrolledList of message summar
from which the user can make selections, and a Text editor might place a Text widget in the work area. An applicat
work area might require a custom widget or a non-widget-based X window instead.

The work area can have both horizontal and vertical scrollbars allowing the user to view its entire contents if they
too large to be displayed all at once. The main window can also contain an optional command area below the w
area, where the user can enter typed commands. This area is most helpful for porting character—based application:
Motif GUI, but it can be useful for other applications as well. At the bottom of the main window is an optional
message area. This area should be used for status and informational messages only, not for error messages 0
other type of message that requires a response from the user.

60

4 OQOverview of the Motif Toolkit 4.4.2 Menus

While it is possible to construct your own main window, the Motif toolkit provides the -special-purpose
MainWindow widget, which supports the recommended style. All of the elements in the MainWindow are optional,
an application can use it to display just the areas that it requires. The MainWindow widget is described in detail
Chapter 4, The Main Window.

4.4.2 Menus
Motif supports three different styles of menus. PulldownMenus that are displayed from the MenuBar in
MainWindow are the most common type of menu. A PulldownMenu is displayed when the user selects

CascadeButton in the MenuBar. The menu pane is displayed below the CascadeButton. the figure shows a typ
MenuBar and PulldownMenu.

Oct 24 :3Zom (36; hu.

Oct 28 3:27om (49 nwm
Nov 12 :42>m (65 Re
Feb 16 (74, bu

Feh 18
Mar 15
Mor 19

“Tam (23] Fwn
:J9m (35] di
:34om (218) &

[y
[N A A TR N
—

g

[

Don Heller

A MenuBar and an associated PulldownMenu

An item in a PulldownMenu can have a cascading menu associated with it. The cascading menu is displayed to
right of the menu item as shown in the figure, so these menus are sometimes referred to as pullright menus.

Include Msg.)

7 3:42>m (65 Re sone thought about
2
2

16 13:18am (74 buzlding mctif 1.2.2
18 3:J1om (23] Ewerest talk

61

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

A cascading menu

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. Motif provides convenien
functions that create specially configured RowColumn widgets for these menu objects. The RowColumn widget
then populated with PushButtons, CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. |
case of a MenuBar, all of the children must be CascadeButtons, since each button brings up a separate menu.
PulldownMenu pane, most of the items are PushButtons or ToggleButtons, although -Separators can be usec
clarity. If an item posts a cascading menu, it must be a CascadeButton. The additional menu is created separa
populated with its own buttons, and -attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is another specially—configured RowColum
widget, but in this case the behavior is quite different. An OptionMenu is typically used to prompt the user to choose
value. The RowColumn widget displays a Label and a CascadeButton that shows the current value. When the
clicks on the button, a menu that contains the rest of the choices is popped up directly on top of the CascadeBut
Choosing an item from the menu modifies the label of the CascadeButton so that it shows the currently—selected it
the figure shows an OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupMenu is not attached to a visib
interface element. A PopupMenu can be popped up at any arbitrary location in an application, usually as a result of
user pressing the third mouse button. PopupMenus are meant to provide shortcuts to application functionality, sc
application can use different PopupMenus in different contexts and for different components in an interface.

Exit Exit

Draw Mode: Line | Draw Muode:

Before After

An OptionMenu

In Motif 1.2, a menu can be torn off from the component that posted it. A menu is normally only displayed for as lor
as it takes the user to make a selection. Once the selection is made, the menu is closed. When a menu is torn ¢
remains posted in its own window. Now the user can make as many selections from the menu as she would |
without having to repost the menu each time. For more information on tear—off menu functionality, as well as tt
different types of Motif menus, see Chapter 15, Menus.

4.4.3 The Window Manager

To the user, the MainWindow looks like the top—level window of an application. In window-system talk, a top—leve
window resides at the top of the window hierarchy for an application. Its parent is the root window, which is what t

62

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

user perceives as the background behind all the windows on the desktop. In the Xt—world, however, things are a |i
different. Behind every visible top—level application window is a special kind of widget known as a shell widget.

Every window that can be placed independently on the screen, including top-level windows and dialog boxes, ha
shell widget as its parent. The user does not see the shell because it is obscured by all of the other widgets ir
window. A shell widget can only contain one managed child widget; the shell does not perform any geomet|
management except to shrink—wrap itself around this child. The child is typically a manager widget, such as
MainWindow, that is responsible for managing the layout of the primitive components, such as Labels, Text widge
ScrollBars, and PushButtons. The items that the user actually sees and interacts with are descendants of the
widget because they are contained within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with the window manager on beh:
of the application. Without the shell, the application has no idea what else is happening on the desktop. It is ve
important for you to understand that the window manager is a separate application from your own. The visual a
physical interaction between an application and the window manager is usually so close that most users cannot tel
difference between the two, but the distinction is important from a programming perspective.

To get an idea of the relationship between the window manager and an application, let's compare it with the way a
is built and how it fits into a room. A bed is made up of a frame, a mattress, and as many accessories as you wal
pile on top of it. The main window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw or
represent the user-interface controls inside the main window. The whole lot sits on top of the bed frame, which is
shell widget. When you push a bed around the room, you're really pushing the bed's frame. The rest just happens 1
along with it. The same is true for windows on the screen. The user never moves an application window, she mo
the shell widget using the window manager frame. The application just happens to move with it.

You may have to stretch your imagination a little to visualize a bed resizing itself with its frame, but this is precise
what happens when the user resizes an application. It is the window manager that the user interacts with durir
resizing operation. The window manager only informs the application about the new size when the user is do
resizing. The window manager tells the shell, the shell communicates the new size to its child, and the change -fil
down to the rest of the widgets in the application.

The window manager frame is composed of window decorations that the window manager places on all top-le
windows. These controls allow the user to interactively move a window, resize it, cause it to redraw itself, or even
close it. the figure shows the standard Motif window manager (mwm) decorations. For information on how to u
mwm, see Volume Three, X Window System User's Guide, Motif Edition.

63

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

Titla bar Minimize button
Window menu button \ N\ Maximize
~ » 5, button
.~ Horizantal
. o rasize handfe
Cliantaraa — |
) 2 Lo
Verticalrasiza handle — . Rasiza comer

Motif window manager decorations

The window menu displays a list of window manager functions that allow the user to move, resize, and exit t
application. An application does not have access to the menu itself or the items within it; similarly, it cannot g
handles to the minimize and maximize buttons. These objects belong to the window manager and act independe
from an application.

Motif provides window manager protocols that allow menu items like these to affect an application. An applicatio
can also interact with the window manager using many of the same types of protocols. You can specify which of 1
items in the window menu you want to appear, whether or not there are resize handles on the window frame,
whether or not you want to allow the user to iconify the window. However, the user is expecting all of the applicatior
on her desktop to interact consistently with the window manager. This expectation is magnified by the fact that t
user has probably set quite a few resources for the window manager. Since unexpected interference from
application rarely makes users happy, you should leave the window manager alone. A technical discussion of
window manager can be found in Chapter 16, Interacting With the Window Manager.

As we pointed out earlier, it is possible for an application to have more than one independent window. In addition
the main window, there may be one or more dialog boxes, as well as popup windows, and even independ
application windows that co—exist with the main window. Each of these cases requires different handling by tl
window manager, and as a result, there are several different classes of shell widgets. the figure shows the ¢
hierarchy of the different types of shell widgets available in the Motif toolkit. The Shell widget class is anothe
metaclass that specifies resources and behaviors inherited by all of its subclasses.

64

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

[- Motit

[- Xtintrinsics

OverridaShell H MenuShl]

TopLaveiShall H ApplicatiorShel
WMShall H VandarShell '—I:: L peli i

TransisriShall H DidlogShell l

The Shell widget class hierarchy

In some cases, an application needs to put up a temporary window that is completely free of window manac
interaction. Menus are one such a case. When a user pops up a menu, she typically wants to make a ch
immediately, and she wants that choice to take precedence over any other window system activity. The wind
manager does not need to be involved either to decorate or to position the menu, as it is entirely up to the applicatic

As its name suggests, the OverrideShell widget class is provided for windows that bypass the window manag
OverrideShells are like futons; you can place them on the floor without using a bed-frame (and without beir
tasteless). It doesn't make much sense to use an OverrideShell as the main window for an application, except pos
for a screen—locking application. The purpose of this type of application is to prevent other applications fro
appearing on the screen while the computer is left unattended. Because the window manager is unaware of
OverrideShell, it does not provide window manager controls, and it does not interpret window manager accelerat
and other methods for bypassing the lock.

The OverrideShell is a generic Xt-based widget class, so the Motif toolkit provides the MenuShell to service tt
special interface needs required by the Motif Style Guide. The MenuShell's translation table is set to support keyhc
traversal, its XmNfocusPolicy is set to XmPOINTER, and its XmNallowShellResize resource is set to True.

The MenuShell also makes sure that its child is a RowColumn widget. There is little more to be said abo
MenuShells, but for an in—depth discussion on the various types of menus you can use in Motif, see Chapter]
Menus. Shell widgets must communicate with the window manager to negotiate screen real estate and a wide val
of other properties. The information that is exchanged is defined by the X Consortium's Inter—Client Communicatiol
Conventions Manual (ICCCM). The WMShell widget class implements ICCCM-compliant behavior as a standar
part of the X Toolkit Intrinsics, so that it is available to all vendors providing Xt-based widget sets and windov
managers. This shell widget is what allows Motif applications to work correctly with virtually any ICCCM-compliant
window manager. In our analogy, a WMShell is a simple, wire bed-frame that doesn't have any special attributes, |
wheels or rollers.

The VendorShell widget class is subclassed from the WMShell class; it allows vendors, such as OSF, to def
attributes that are specific to their own window managers. In our analogy, this widget class is like having a bed fra
that has attached cabinets, shelves above the headboard, or nice wheels that glide on the carpet. The M
VendorShell is aware of special features of mwm. The widget does not actually add any functionality to the windc
manager, but it is designed for applications that wish to interact with it. For example, all the attributes of windo
manager decorations can be modified or controlled through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but the features they provide &
available to an application. For example, the Motif VendorShell allows an application to specify the items in th

65

4 Overview of the Motif Toolkit 4.4.4 Dialogs

window menu and to control what happens when the user closes the window from the window menu. Chapter 1
Interacting With the Window Manager, discusses window manager interactions in more detail. You can think «
dialog boxes as an application's secondary windows. Since dialogs are not meant to remain on the screen for:
long, they do not need all of the decorations that are typically provided by the window manager. However, dialogs
not completely independent like menus, so they do need to be controlled by the window manager. For example, if
application is iconified, its dialog boxes are typically iconified as well. Dialog boxes are usually implemented in X
using TransientShells.

The DialogShell is a Motif-defined widget class subclassed from the TransientShell and VendorShell classes. Mc
functions for creating dialog boxes tend to hide the shell widget side of the dialog. When you make a call lik
XmCreateMessageDialog(), you are actually creating a MessageBox widget as a child of a DialogShell widget.
See Chapter 5, Introduction to Dialogs, for details on Motif dialogs. When you initialize the X Toolkit with a call
such as XtApplnitialize(), you are automatically returned an ApplicationShell widget to use as the top-level
widget in your application. If an application uses additional top—level windows, they are typically TopLevelShells
The differences between these two classes are subtle and deal mostly with how resources are specified in a res
file. In Chapter 7, Custom Dialogs, we explore some ways in which TopLevelShells can be used as primary windov
apart from the main window.

4.4.4 Dialogs

Some applications can get all their work done in one main window. Others may require multiple windows, so Mot
allows an application to have multiple top-level windows. However, even applications without this level of
complexity need to display transient windows called dialog boxes. Motif provides two main types of dialog boxe:
message dialogs and selection dialogs. Message dialogs are designed to allow an application to communicate witl
user, while selection dialogs prompt the user to enter different types of information. It is also possible to create cust
dialogs for specialized application functionality. Message dialogs simply communicate some kind of message to 1
user and include buttons that allow the user to respond to the message. For example, a menu item to delete afile r
issue a dialog with the message, "Are you sure?" with PushButtons labeled Yes, No, and Cancel.

The Motif MessageBox widget that is used to create message dialogs actually comes in seven different guises.
different styles are meant to be used for different types of messages; some of the styles also display a symbol def
by the Motif Style Guide. Motif provides convenience routines for creating all of the different styles, so they are ofte
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a "do not enter" symbol along with a message that the user has made an error. For
example, she may have pressed a PushButton at the wrong time, made an invalid selection in a List widget,
entered an unknown filename for a Text widget.

InformationDialog

The InformationDialog displays an "i" along with an informational message. These dialogs are usually
displayed in response to a request for help.
MessageDialog

The MessageDialog does not display a symbol by default, although a symbol can be specified using the
XmNsymbolPixmap resource. These dialogs can be used to display any kind of message.
QuestionDialog

The QuestionDialog shows a question mark symbol with a question that the user needs to answer. Questior
are typically of the yes/no form, so the possible answers typically include Yes and No. A QuestionDialog

66

4 Overview of the Motif Toolkit 4.4.4 Dialogs

should not be used for a question that requires an answer in the form of text or a selection from a list of som
kind.
TemplateDialog

Motif 1.2 provides a TemplateDialog to allow an application to create a custom dialog. By default, the
TemplateDialog does not display a symbol or a message, but these items can be added to the dialog.
WarningDialog

The WarningDialog displays an exclamation mark along with a message that warns the user about a particu
situation. These dialogs are commonly used to make sure that the user wants to do something destructive, |
delete a file or exit an application without saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that the application is busy processing
lengthy computation or anything else that requires the user to wait.

the figure shows a typical QuestionDialog in an application. For more information on message dialogs, s
Chapter 5, Introduction to Dialogs.

Choice |

~Maillalf has heen madified — npdate?

Yes No I Cancel I

| 1

A QuestionDialog

Selection dialogs are meant to provide the user with a list of choices of some sort. Motif -provides differel
styles of selection dialogs for different purposes. For example, a SelectionDialog presents a ScrolledLi
containing an arbitrary list of choices that can be selected with the mouse. The dialog also contains
TextField widget that can be used to type in a choice which may or may not also be on the list. the figu
shows a SelectionDialog.

The PromptDialog, as shown in the figure, is useful for prompting the user to enter some information.

67

4 Overview of the Motif Toolkit 4.4.4 Dialogs

A SelectionDialog

rutsBora. conl

A PromptDialog

The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is used to select a file in th
directory structure. A FileSelectionDialog is shown in the figure.

68

4 Overview of the Motif Toolkit 4.4.4 Dialogs

A FileSelectionDialog

The CommandDialog is an extension of the PromptDialog in that items input to the text entry field are store
in a ScrolledList. The intent is for the user to provide the application with commands; the list region contain
a history of the commands that have already been typed. The user can select an item in the history lis
reissue a previous command. the figure shows an example of a CommandDialog.

A CommandDialog

For detailed information about all of the different Motif selection dialogs, see Chapter 6, Selection Dialogs.
There are many types of functionality that are not covered by the standard Motif dialog types. Fortunately,

69

4 Overview of the Motif Toolkit 4.4.4 Dialogs

is fairly easy to create your own dialogs. If you need to create a custom dialog, there are some guidelines
the Motif Style Guide that you should follow. At the highest level, all dialogs are broken down into two majo
components: the control area (or work area) and the action area. These areas are conceptual regions that |
be represented by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you can see from the sele
dialogs, this area can be used to provide a variety of control elements. For example, the SelectionDialog u
a List widget and a TextField widget. It is also common for a custom dialog to display an array o
PushButtons or ToggleButtons. A communications program might have a setup dialog that allows the user
set parameters such as baud rate, parity, start and stop bits, and so on, using an array of ToggleButtons.
controls in the control area provide information that is used by the application once an action area button
pressed.

the figure shows a custom dialog with a control area that contains many items. Chapter 7, Custom Dialog
discusses how to build customized dialogs, which may require the direct creation of widgets in the contr
area. Motif dialogs, on the other hand, do not require you to create any of the objects in the control area. T
widgets displayed in that part of the dialog are always predefined and automatically created. One importe
concept to be aware of when it comes to dialogs is modality. In general, GUI-based programs are expecte
be modeless. What this ultimately means is that the user, not the application, should be in control. The u;
should be able to choose from an array of application functions at any time, rather than stepping through th
in a prearranged sequence, under the application's control.

Of course, there are limits to modelessness. Sometimes one thing has to happen before another. Of
sequencing can be taken care of simply by nesting graphical user interface elements. For example, faced \
the main window, the user may have only a choice of menu titles; once she pulls down the file menu, she nr
have a choice of opening, closing, saving, renaming, or printing the contents of a file. At some point, thoug
she goes far enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to require and before the user can go back to workir
with the application. For example, if the user asks to load a file, she may need to specify a filename in a dial
before she can edit the file. A modal dialog requires an answer immediately, by disallowing input to any oth
part of the application until it is either satisfied or cancelled. There may be other cases, though, where dialc
are modeless. They can be left up on the screen without an immediate response, while the user interacts \
the main application window or another dialog.

70

4 Overview of the Motif Toolkit 4.4.5 Pixmaps

Lir=s am hew 20 12030 (32 o=imaea v
v Lmi O RRTSRIn e cwie Kew R0 F-28pn (55 pliva
20 r Lit 3cadley Fev 8 11:2%n (13) firks

A custom dialog

4.4.5 Pixmaps

In this section, we are going to take a closer look at how Motif supports graphic images. The Motif Label widget at
all of its subclasses can display pixmaps as their labels. The MessageBox provides the XmNsymbolPixmap resour
for specifying the image that is displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmaps. XmGetPixmapByDepth() and
XmGetPixmap() both create a pixmap and cache it, so that it can be reused by an application.
XmGetPixmapByDepth() is new in Motif 1.2; it provides a way to specify the depth of the pixmap that is created.
XmGetPixmap() always creates a pixmap that has the same depth as the screen on which image is created. Tl
caching mechanism provided by these routines is on a per—client basis; different processes cannot share pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a handle to the pixmap in c
another call is made requesting the same image. If this occurs, the function returns the exact same pixmap that
returned to the original requestor and increments an internal reference counter. In order to keep a clean ho
whenever you retrieve a pixmap using either XmGetPixmap() or XmGetPixmapByDepth(), you should call
XmDestroyPixmap() when you no longer need the image. This function decrements the reference count for the

71

4 Overview of the Motif Toolkit 4.4.5 Pixmaps

pixmap. If the reference count reaches zero, XmDestroyPixmap() actually calls XDestroyPixmap() to discard
the pixmap.

XmGetPixmapByDepth() takes the following form:

Pixmap
XmGetPixmapByDepth(screen, image_name, foreground,
background, depth)
Screen *screen;
char *image_name;
Pixel foreground;
Pixel background;
int depth;

The image_name can either be a filename or the name of an image registered using Xminstalllmage(), which
we are going to describe shortly. The background and foreground colors and the depth of the pixmap are specified
the corresponding parameters.

XmGetPixmap() takes the same form as XmGetPixmapByDepth(), minus the depth parameter.
XmGetPixmap() creates a pixmap that has the same depth as the given screen, so you cannot rely on
XmGetPixmap() to create a single—plane pixmap. The terms single—bit and single—plane are interchangeable; the:
imply a pixmap with only two colors: 0 and 1. While the term bitmap usually refers to a single—plane pixmap, this i
not necessarily true outside of the X social culture. In Motif 1.2, you can use XmGetPixmapByDepth() to create a
bitmap; with Motif 1.1 you have to use an Xlib routine, XCreateBitmapFromData().

Whenever XmGetPixmapByDepth() or XmGetPixmap() is called, it looks in the cache for a
previously—created pixmap that matches the given name, colors, and depth. If the routine finds a match, it returns
cached pixmap and increments the reference count for the image. Since the pixmaps are cached, two separate pe
an application could have a handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixmap. As we just mentioned, tf
parameter can either be a filename or a symbolic name previously registered using Xminstalllmage(). Both
XmGetPixmap() and XmGetPixmapByDepth() use the following algorithm to determine what pixmap to return

or create:

 Look in the pixmap cache for an image that has the same screen, image_name, foreground,
background, and depth as the specified image. If there is a match, return the pixmap.

« If there is no match in the pixmap cache, look in the image cache for an image that matches the specified
image_name. If there is a match, use the image to create the pixmap that is returned.

» Otherwise, interpret the image_name as a filename, read the pixmap data directly out of that file, and create
the pixmap.

The first step is fairly straightforward. The second step checks the image cache that is used internally by the Motif
toolkit. Motif defines a number of images that you can use in an application. lists the image names predefined by th
toolkit. tab(@), linesize(2); I | | ICWp9 | I.
Image Name@Description _
background@Solid background tile 25_foreground@A 25% foreground, 75% background tile 50_foreground@A
50% foreground, 50% background tile 75_foreground@A 75% foreground, 25% background tile
horizontal@Horizontal lines tile vertical@Vertical lines tile slant_left@Left slanting lines tile slant_right@Right
slanting lines tile

Motif also installs a number of images at run—time to support dialog images and other random pixmaps. None of
these image names are publicly available. You can install your own images by predefining them and loading them i

72

4 Overview of the Motif Toolkit 4.4.6 Color

the image cache using Xmlinstalllmage(), which takes the following form:

Boolean

Xminstalllmage(image, image_name)
Xlmage *image;
char *image_name;

The image parameter is a pointer to an XImage data structure that has been previously created or, more commonly
statically initialized by the application. It is possible to create an image dynamically from an existing window or
pixmap using XGetlmage(), but this is not the way the function is typically used.

If you attempt to install an image using an image_name that matches one already in the cache, the function returi
False and the image is not installed. Otherwise, the function returns True. You can uninstall an image by calling
XmUninstallimage(). Once the image is uninstalled, it cannot be referenced by name anymore and a new image
may be installed with the same name. The XImage structure is not copied by Xminstalllmage(), so if the image
pointer you pass has been allocated using XCreatelmage() or XGetlmage(), you must not free the data until
after you call XmUninstalllmage().

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, it creates the pixmap based
on the image data, not on the image itself. As a result, the pixmap that is created is not affected by the image be
uninstalled by XmUninstalllmage().

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loaded from a file. |
image_name starts with a slash character (/), it is taken as a full pathname. Otherwise, the routines look for the fil
using a search path. On POSIX systems, the environment variable XBMLANGPATH can be set to specify a desit
directory in which to search for bitmap files. If this variable is not set, the pathname used is based on the values of
XAPPLRESDIR, HOME, and LANG environment variables. See the reference page in Volume Six B, Motif
Reference Manual, for complete details on the search path that is used.

When XmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a image name, the pathname
must match completely for the routine to return a cached image. The file xlogo64 will not match a previously—load
pixmap that has the name /usr/include/X11/bitmaps/xlogo64. If you do not need to worry about using differe
pixmaps for different environments, we recommended that you always specify a full pathname to these routines to
assured that you get the desired file.

4.4.6 Color

Color plays an important role in a graphical user interface. It appeals to the senses, so it can provide an aestf
quality, while at the same time it can be used to convey information to the user. However, for all the power of color,
is frequently abused by applications. A color combination that appeals to some people may offend others. The sa
bet with color is to avoid hard-coding any use of color in your application and provide enough flexibility so that th
user can configure colors in a resource file or interactively using the application. Of course, many applications ¢
based on the use of color, so this sweeping generalization only applies to those parts of an application that are
dependent on color.

The Motif widget set provides a number of widget resources that specify colors. All of the Motif widgets use th
XmNforeground and XmNbackground resources. However, Motif gadgets do not use these resources because
they are rendered using the foreground and background colors of their parent. Although every widget class ma
different use of the XmN-background and foreground resources, text is typically rendered in the foreground

color and everything else is shown using the background color. Some widgets provide additional color resources
particular aspects of their appearance. For example, ToggleButtons use the XmNselectColor resource for the

73

4 Overview of the Motif Toolkit 4.4.6 Color

square/diamond selection indicator, PushButtons use XmNarmColor as their background when they are armed, a
ScrollBars use XmNtroughColor to set the color of the area behind the slider and directional arrows.

The XmNborderColor resource is another resource that can be specified for any widget, as it is defined by the Core
widget class. Since Motif widgets typically have a border width of 0, this resource is rarely used. The
XmNhighlightColor resource specifies the color of the highlighting rectangle that is displayed around the
interface component that has the keyboard focus. This resource is defined by the Gadget, Manager, and Primi
metaclasses, so it can be specified for any Motif component.

Perhaps the most troublesome of all the color resources are XmNtopShadowColor and
XmNbottomShadowColor. These are the colors that give Motif widgets their 3D appearance on a color display. If
set inappropriately, these colors can ruin the aesthetics of a interface. These resources are set automatically b
toolkit based on the background color of the object, so the colors are not normally a problem. If the background cc
of a PushButton is blue when it is created, the toolkit automatically calculates the XmNtopShadowColor to be a
slightly lighter shade of blue and the XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamically because the toolkit does
automatically change the shadow colors for you. So if you change the XmNbackground of the PushButton to red
the top and bottom shadow colors remain the different shades of blue. It is important to note that the shadow resou
are only used by widgets, not gadgets. If you dynamically change the background color of a manager widget
automatically recalculates the top and bottom shadow colors and redisplays its gadgets correctly. Many consider
fact that this process is not automated for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalculate the shadow colors and
the resources yourself. If you are using Motif 1.2, you can use the new XmChangeColor() routine, which takes the
following form:

void

XmChangeColor(widget, background)
Widget widget;
Pixel background;

This routine changes all the foreground color, shadow colors, and select color for the specified widget based on the
background color. The select color only applies to ToggleButtons (XmNselectColor) and PushButtons
(XmNarmColor).

If you are using Motif 1.1, you have to do a bit more work to change the colors for a widget. In this case, you need
use XmGetColors(), which takes the following form:

void
XmGetColors(screen, colormap, bg, fg, top_shadow,
bottom_shadow, select)
Screen *screen;
Colormap colormap;
Pixel bg;
Pixel *fg;
Pixel *top_shadow;
Pixel *bottom_shadow;
Pixel *select;

This routine takes a colormap and a background color and calculates and returns an appropriate foreground color,

and bottom shadow colors, and select color. Once you have the colors, you need to specify the appropriate resourc
for the widget. The following code fragment demonstrates how to set the background of a PushButton to red:

74

4 Overview of the Motif Toolkit 4.5 Changes in Motif 1.2

Pixel bg, top_shadow, bottom_shadow, fg, select_color;
Colormap cmap;
Widget pb;

[* First, set the background color to red... */

XtVaSetValues (pb,
XtVaTypedArg, XmNbackground, XmRString, "red", 4,/* strlen("red")+1 */
NULL);

/* Once set, get it again, so we know what pixel value it got.
* Also get the widget's colormap, since we'll be setting its new
* colors based on the same colormap.
*/
XtVaGetValues (pb,
XmNbackground, &bg,
XmNcolormap, &cmap,
NULL);

/* Let Motif calculate the new colors based on that one color */
XmGetColors (XtScreen (pb), cmap, bg, &fg,
&top_shadow, &bottom_shadow, &select_color);

/* Set the colors accordingly. */
XtVaSetValues (pb,
XmNtopShadowColor, top_shadow,
XmNbottomShadowColor, bottom_shadow,

XmNarmcColor, select_color,
XmNborderColor, fg,
NULL);

A basic problem behind setting and getting colors for widgets is that what you get for a given pixel value depends o
the colormap. A pixel is simply an index value into an array of color definitions (a colormap). The problem with
colormaps is that you never know what colormap is associated with any particular widget.

By calling XtVaSetValues() using the type—converting resource, XtVaTypedArg, we defer the problem to the
toolkit and its string—to—color type converter. The toolkit allocates the color out of the colormap already owned by tt
toolkit and sets the background color accordingly. Then we can get the actual pixel value and the colormap us
XtVaGetValues(). We pass the colormap and the background pixel value to XmGetColors() to calculate the

rest of the colors. Once we have obtained all of the colors, we can set them using XtVaSetValues().

The Label widget and its subclasses cannot display text using more than one color. However, you can crea
multi—plane pixmap and render various strings directly into it using XDrawString(). You can use multiple colors

by changing the foreground color in the GC using XSetForeground() or XChangeGC(). Once you have the
pixmap, you can use it to set the XmNIlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widget's XmN-foreground color. You cannot change
the color of individual items in a List widget. The XmN-background of the List affects all areas of the widget not
associated with the entries themselves. The text in a Text widget or a TextField widget is also displayed using
XmN-foreground color; there is no way to display text using different colors in these widgets. When a List widget
or Text widget is the direct child of a ScrolledWindow, the ScrollBars automatically match the background color c
the List or Text widget.

4.5 Changes in Motif 1.2

75

4 Overview of the Motif Toolkit 45.1 General Toolkit Changes

Release 1.2 of the Motif toolkit introduces a number of new features, as well as many enhancements to exist
functionality. This section summarizes all of the changes in Motif 1.2 and refers you to other sections in the book 1
more detailed information on specific changes. We also describe the changes that we made to the example prog
in the book to make them accurate with respect to Motif 1.2.

4.5.1 General Toolkit Changes

Many of the changes in Motif 1.2 affect the functionality of the toolkit as whole, rather than individual widget classe:
This release demonstrates performance improvements, as the code has been reorganized to improve locality
dynamic memory usage has been reduced. The toolkit also benefits from the improved performance of the X11
translation manager. Motif 1.2 provides a new header file, <Xm/XmAll.h>, that includes all of the public header fil
for the toolkit. The <Xm/ExtObject.h>, <Xm/Traversal.h>, <Xm/VaSimple.h>, and <Xm/VendorE.h> header files th
are present in Motif 1.1 are obsolete in Motif 1.2. The addition of internationalization capabilities is one of the maijc
enhancements provided by Motif 1.2. An internationalized application can run in different language environmen
without any modification. Most of the support for developing internationalized applications in Motif is based or
features provided by X11R5. Xlib provides support for internationalized text output, interclient communication, an
localization of the resource database, while Xt handles establishing the locale. See Section #slangproc in Chapte
The Motif Programming Model, for more information on establishing the language environment in an Xt—base
application; refer to Volume One, Xlib Programming Manual, for a description of the internationalization features in
X11R5.

The Text and TextField widgets have been modified to support internationalized text input and output; see Sect
#stextil8n in Chapter 14, Text Widgets, for more information. The Motif routines that manipulate compound string
and font lists have also been updated for Motif 1.2. See Chapter 19, Compound Strings, for details on the new API
XmString and XmFontList values. The ability to transfer data using the drag and drop metaphor is another major
new feature in Motif 1.2. Drag and drop allows the user to select a data source, drag the data around on the disyg
and drop the data on a new location. The drag and drop mechanism handles data transfer both within and betv
applications. The Label widget and its subclasses, the List widget, and the Text and TextField widgets all provi
built-in drag and drop capabilities. The toolkit also provides some new objects and routines that can be usec
implement custom drag and drop functionality. In Chapter 18, Drag and Drop, we describe the Motif drag and dro
model and the objects that implement it, and we present some examples of providing custom drag and d
functionality in an application. Motif provides a new feature in menus that allows them to be torn off and displayed
separate windows. Tear—off menus make it easy for the user to make repeated selections from a menu. Norm:
when a menu is posted, it is only displayed until a selection is made, and then it is removed. If the menu has been
off, it is placed in its own window and remains available for the user to make multiple selections. The tear-o
functionality is activated by a special tear—off button in the menu. The button displays a dashed line to indicate tt
the menu can be torn off, much as a coupon is torn out of a newspaper. Tear—off functionality is provided for all of t
Motif menu types; it is controlled by the XmNtearOffModel resource of the RowColumn widget. See Section
#stearoff in Chapter 15, Menus, for a more complete description of tear—off menus. The new Display and Scre
objects store per—display and per—screen resources and data. These objects essentially provide a way for the tool
keep track of information about the display and the screen that it needs to access frequently. When Motif creates
first shell on a particular display or screen, it creates a Display or Screen object automatically. An application ¢
retrieve the Display and Screen objects using XmGetXmDisplay() and XmGetXmScreen(), respectively. Values

for the resources defined by the Display and Screen objects can be set in a resource file or in a program u
XtVaSetValues(), and they can be retrieved using XtVaGetValues().

The Display object defines resources that an application can set to control the behavior of the application on
display. The XmNdraglnitiatorProtocolStyle and XmNdragReceiverProtocolStyle resources

specify the protocol used during a drag and drop transfer, as described in Section #sdragprot, whi
XmNdefaultVirtualBindings sets the default virtual bindings for the display. For a complete description of

the Display object, see the reference page in Volume Six B, Motif Reference Manual.

76

4 Overview of the Motif Toolkit 4.5.1 General Toolkit Changes

The Screen object defines a number of resources that control the default drag icons used during drag and drop
Section #smodicon for a discussion of these resources. The XmN-darkThreshold,
XmNforegroundThreshold, and XmNlightThreshold resources specify values that affect the default color
calculation algorithm, as we describe shortly.

The XmNfont, XmNhorizontalFontUnit, and XmNverticalFontUnit resources specify the font units that
are used to convert geometry values when the Xm100TH_FONT_UNITS value is being used for units. The
resources make the XmSetFontUnit() and XmSetFontUnits() routines in Motif 1.1 obsolete.

The XmNmenuCursor resource controls the pointer shape that is used when a menu is posted; the resour
supercedes the XmGetMenuCursor() and XmSetMenuCursor() functions in Motif 1.1. The
XmNunpostBehavior resource indicates the behavior of a menu when the mouse button is pressed outside of the
menu. The value XmUNPOST_AND_REPLAY unposts the menu hierarchy and replays the event, while XmUNF
just unposts the menu. For more information on the various Screen resources, see the reference page in Volume
B, Motif Reference Manual. Motif provides a number of new functions that support better control of keyboar
traversal. The XmGetFocusWidget() routine returns the widget that has the input focus, while
XmGetTabGroup() returns the widget that is the tab group for the specified widget. An application can also call
XmisTraversable() to determine whether or not a particular widget is eligible to receive the input focus. See
Section #skeybtrav in Chapter 8, Manager Widgets, for more information about keyboard traversal.

The Manager widget class defines the XmNinitialFocus resource to allow an application to specify the widget
that has the initial keyboard focus in a dialog. This resource can be used for both MessageDialogs a
SelectionDialogs, although it is normally only used for SelectionDialogs. The resource specifies the widget that h
the keyboard focus the first time that the dialog is popped up, as described in Section #sinitfocus in Chapter
Introduction to Dialogs.

The XmTrackingEvent() routine in Motif 1.2 replaces the existing XmTrackingLocate() routine for
implementing context—sensitive help. XmTrackingEvent() works for both keyboard and mouse events, and it
returns the widget selected by the user, regardless of whether or not the widget is sensitive to input. The routine
returns the actual event performed by the user, as explained in Section #sconthelp in Chapter 21, Advanced Dia
Programming. Motif 1.2 provides a representation type manager to handle many of the tasks related to enumere
values, such as installing resource converters that convert string values to their numerical representations. The tol
provides following functions for managing representation types:

XmRepTypeAddReverse()
XmRepTypeGetld()
XmRepTypeGetNameList()
XmRepTypeGetRecord()
XmRepTypeGetRegistered()
XmRepTypeRegister()
XmRepTypeValidValue()

For more information about these routines, see the appropriate reference pages in Volume Six B, Motif Reference
Manual.

Motif also provides a name—-to—widget converter in this release so that widgets can be specified in resource files. T
converter is most useful for specifying Form attachments in a resource file. The converter use
XtNameToWidget() from the parent of the widget specified on the left—hand side of the resource specification.
Motif includes the new xmbind client that configures the virtual key bindings for Motif applications. This action is
performed at startup by the Motif Window Manager (mwm) or any application that uses the Motif toolkit, so a
application only needs to use xmbind if it wants to reconfigure the bindings without restarting mwm or a Mot
application. The toolkit also provides a new function, XmTranslateKey(), to translate a keycode into a virtual

77

4 Overview of the Motif Toolkit 4.5.2 Specific Widget Changes

keysym. This function allows an application that overrides the default XtKeyProc to handle Motif's virtual key
bindings. See Section #seventspec in Chapter 2, The Motif Programming Model, for more information on virtue
bindings. The new XmChangeColor() routine changes the foreground color, shadow colors, and select color for a
widget based on a background color. The XmNdarkThreshold, XmN-foregroundThreshold, and
XmNlightThreshold resources of the Screen object allow the application or the user to set values that affect the
default color calculation algorithm. The values for these resources indicate the levels of perceived brightness (betw
0 and 100) that distinguish between a light color and a dark color. The XmNforegroundThreshold value is used

in calculating the default foreground and highlight colors, while the other two resources are used in calculating t
default shadow and select colors. See Section #scolor for a discussion of color resources in Motif. An application «
use the new XmWidgetGetBaselines() routine to get the position of the text baseline in a widget, while
XmWidgetGetDisplayRect() can be used to get the size and position of the bounding box for the widget. These
routines provide information that is useful in laying out and aligning components in an interface.

4.5.2 Specific Widget Changes

Motif 1.2 also introduces a number of new features, including resources and callback routines, for individual widg
classes. In Motif 1.2, the Frame widget can have two children: a work area and a title. The Frame draws a bor
around its work area child and adds space for a title if one is specified. The XmNchildType constraint resource
specifies whether a child is the work area or the title. This resource can have either the valu
XMFRAME_WORKAREA_ CHILD or XmFRAME_TITLE_CHILD. The XmNchildHorizontalAlignment,
XmNchildHorizontalSpacing, and XmNchildVerticalAlignment constraint resources control the

positioning of the title child. For more information on these resources, see Section #sframe in Chapter 8, Manag
Widgets. The Label widget functions as a drag source for drag and drop, as described in Chapter 18, Drag and Dr
The ProcessDrag() action routine, which is bound to the second mouse button, handles this functionality. The
List widget provides the following new functions for managing list items:

XmListAddltemUnselected()
XmListDeletePositions()
XmListGetKbdIltemPos()
XmListPosSelected()
XmListPosToBounds()
XmListReplaceltemsPosUnselected()
XmListReplaceltemsUnselected()
XmListReplacePositions()
XmListSetKbdIltemPos()
XmListUpdateSelectedList()
XmListYToPos()

For more information on these routines, see Chapter 12, The List Widget, and the appropriate reference pages in
Volume Six B, Motif Reference Manual.

When a List widget is set insensitive, it provides visual indication by greying out all of its items. The default value c
the XmNuvisibleltemCount resource is now set dynamically, based on the item count and the height of the List.

The List widget functions as a drag source for drag and drop, as described in Chapter 18, Drag and Drop. Tl
ListProcessDrag() action routine, which is bound to the second mouse button, handles this functionality. The

List also has a ListCopyToClipboard() action routine for copying the selected items to the clipboard, as well as

a ListScrollCursorVertically() routine for scrolling the cursor vertically based on a y—paosition. The
MessageBox widget supports the addition of a MenuBar child, a work area child, and multiple PushButton childre
The XmNdialogType resource can also be set to the value XmDIALOG_TEMPLATE to create a MessageBox thi
can be used as a template for creating a custom dialog. Section #smoddialog in Chapter 7, Custom Dialogs, descr
the template dialog in more detail. The PanedWindow defines a new constraint resource, XmNpositionindex, for

78

4 Overview of the Motif Toolkit 4.5.2 Specific Widget Changes

specifying the position of a child widget in the PanedWindow's list of children. The children are positioned verticall
in the PanedWindow according to this list. The list of children does not include the Sashes. A value of 0 indicates t
beginning of the list, while XmLAST_POSITION places the child at the end of the list. The RowColumn widge!
provides a new resource for controlling the alignment of its children. The XmNentryVerticalAlignment
resource controls the vertical positioning of children that are subclasses of Label, LabelGadget, and Text, as descr
in Section #srowcolumn in Chapter 8, Manager Widgets.

The RowColumn widget also defines the XmNpositionindex constraint resource for specifying the position of a
child widget in the RowColumn's list of children. The children are positioned in the RowColumn according to this lis
A value of 0 indicates the beginning of the list, while XmLAST_POSITION places the child at the end of the list.

The XmNtearOffModel resource of the RowColumn widget controls tear—off functionality in Motif menus. The
widget also defines the XmNtearOffMenuActivateCallback and
XmNtearOffMenuDeactivateCallback callback routines for performing any special processing that is
necessary for handling tear—off menus. Tear-off functionality is described in detail in Section #stearoff i
Chapter 15, Menus. When a ScrollBar is set insensitive, it provides a visual indication of this state by dimming itsel
The ScrollBar also has new action routine, CancelDrag(), that cancels the current slider drag. When the user
presses the ESCAPE key while the slider is being dragged, the action is invoked. In Motif 1.2, the ScrolledWindc
has a new callback that supports keyboard traversal. The XmNtraverseObscuredCallback is invoked when the
user attempts to traverse to a widget that is not visible in a ScrolledWindow. An application can use this callback
make a widget visible in a ScrolledWindow so that the widget can receive the input focus. The
XmScrollVisible() routine makes an obscured child of a ScrolledWindow visible, while
XmGetVisibility() determines whether or not a widget is visible. See Section #sswtrav in Chapter 9,
ScrolledWindows and ScrollBars, for more information on keyboard traversal in ScrolledwWindows.

The SelectionBox and FileSelectionBox widgets now support the addition of a MenuBar child and multipl
PushButton children in addition to the work area child that was supported in Motif 1.1. The new
XmNchildPlacement resource controls the location of the work area child, as described in Section #smodseldlg in
Chapter 7, Custom Dialogs.

The Text and TextField widgets have a number of new resources and callback routines that support wide—chara
strings. These changes have been made for internationalization purposes and are described in Section #stextil
Chapter 14, Text Widgets. The widgets function as drag sources and drop sites for drag and drop, as describe
Chapter 18, Drag and Drop.

The insertion position in the Text and TextField widgets is marked by an I-beam cursor. The destination cursor n
follows the insertion cursor, so it is no longer drawn independently as a caret (*). When a Text or TextField widget
set insensitive, it provides a visual indication of this state by greying out its text and its insertion cursor. Both the Te
and TextField widgets provide the toggle—overstrike() action routine for switching between insert and
overstrike modes. The Text widget also provides the scroll-cursor—vertically() action to scroll the cursor

based on a y position. When the user moves the pointer outside of a Text widget while selecting text, the wid
continues selecting text by scrolling automatically after a time delay.

The new XmTextDisableRedisplay() and XmTextEnableRedisplay() routines provide a way to control

visual updating in a Text widget. The XmTextFindString(), XmTextGetSubstring(), and
XmTextFieldGetSubstring() functions make string manipulation easier. For more information on these
routines, see the appropriate reference pages in Volume Six B, Motif Reference Manual. The TextField widget al
has an XmNfocusCallback in Motif 1.2. The performance of scrolling in the ScrolledText object has been
improved in Motif 1.2. One unfortunate side—effect of this improvement is that it introduces a new data structur
which means that subclasses of the Motif 1.1 Text widget may break under Motif 1.2.

If XmNfillOnSelect is explicitly set to True when XmNindicatorOn is False, the background of the
ToggleButton is set to the XmNselectColor when the button is on.

The VendorShell provides the XmNaudibleWarning resource to specify whether or not an audible cue

79

4 Overview of the Motif ToodkE.3 Changes to the Example Programs

accompanies a warning message. The default value is XmBELL, but the resource can also be set to XmNONE
value of the XmNverifyBell resource of the Text and TextField widgets is based on the new VendorShell resource.

The VendorShell defines the XmNbuttonFontList, XmNIlabelFontList, and XmN-textFontList
resources to replace the existing XmNdefaultFontList resource. The new resources specify the font lists for the
specific types of children of the VendorShell.

The VendorShell also defines the XmNinputMethod and XmNpreeditType resources for controlling
internationalized text input. XmNinputMethod specifies the input method for the application, while
XmNpreeditType indicates the input method styles that are available. The syntax and possible values of both of
these resources are vendor—specific, as discussed in Section #stextil8n in Chapter 14, Text Widgets.

4.5.3 Changes to the Example Programs

All of the example programs in this book have been updated to Motif 1.2 and X11R5. Some of the changes are qt
repetitive and are described in the following list:

« A call to XtSetLanguageProc() has been added to the beginning of each example program, as described
in Section #slangproc.

« Any calls to XmStringCreateSimple() have been replaced with calls to
XmStringCreatelLocalized(), as explained in Section #sstringloc.

» Any references to XmSTRING_DEFAULT_CHARSET have been replaced with references to
XmFONTLIST_DEFAULT_TAG, as discussed in Section #sfonttag.

« Any calls to XmFontListAdd() and XmFontListCreate() have been replaced with calls to
XmFontListAppendEntry(), as described in Section #sfontlist.

The rest of the changes involve using new Motif 1.2 functions and resources. These changes are described in deta
when each example is presented.

4.6 Summary

The Motif widget set gives you a great deal of flexibility in designing an application. But with this flexibility can
come indecision, or even confusion, about the most effective way to use these objects. If you want to give a user ¢
of exclusive choices, should you use a PulldownMenu, a dialog box that contains ToggleButtons arranged it
CheckBox, or a List widget? There is no right answer——or perhaps it is better to say that the right answer depend:
the nature of the choices and the flow of control in your application.

Designing an effective user—interface is an art. Only experience and experimentation can teach you the most effec
way to organize an application. What we can do in this book is teach you how to use each widget class and give y«
sense of the tradeoffs involved in using different widgets. In this chapter, we've given you a broad overview of tl
Motif toolkit. Subsequent chapters delve into each widget class in detail. You should be able to read the chapter:
any order, as the needs of your application dictate.

80

5 The Main Window

This chapter describes the Motif MainWindow widget, which can be used to frame many types of applications. Tl
MainWindow is a manager widget that provides a menu bar, a scrollable work area, and various other optional disp
and control areas.

As discussed in Chapter 3, Overview of the Motif Toolkit, the main window of an application is the most visible an
the most used of all the windows in an application. It is the focal point of the user's interactions with the program, a
it is typically the place where the application provides most of its visual feedback. To encourage consistency acr
the desktop, the Motif Style Guide suggests a generic main window layout, which can vary from application
application, but is generally followed by most Motif applications. Such a layout is shown in the figure. As describe
in Section #smainwindow, a main window can provide a menu bar, a work area, horizontal and vertical scrollbars
command area, and a message area.

Tolder Message View Find Sort Coanpose Options Lawout 11=1y>

Falder walh I 20 total, 0 nevw. 0 nuread, 0 cleleted

. Neve Arcivals

Fleseages: I pEUS LIS
3 Tese Frarnn Nov 15 0 N0pw [R81 4id wer ane ~Fin n w2 N
T An Arllay Nov 17 10 3dyps 2°F) Sun re=a HAmiFl
3 Tileer Xcane: Mar £z 2 Afpa 24) ol 62 Zcoject aeetir:
2

Auliwy 3Lious:
L ofisz. vua

Taszdey Ayan

1 A0
e = 1awe | ==anan D0 il aydera
T evic Junvei- 27 v A i

A A Flanngey v RN RAOC 1 ina Sy Naeante -k

13 Lids ¥ad

erdles 'z wew iy oals
12 _ Lol 2 HulOu, suvowae. Slanz
dl o Lux Boellew Licds 7
14 |~
|
Remll Dektel 'L'n-deletel SAWI Composel qul.yl nesemt'll Ty=late Forwau'll
dadativ= hav=Spanl e T el i seveed D0 veasane= 2
7
Chmmand: |

The main window of a Motif program

In an effort to facilitate the task of building a main window, the Motif toolkit provides the MainWindow widget. This
widget supports the different areas of the generic main window layout. However, the MainWindow widget is not tt
only way to handle the layout of the main window of your application. You are not required to use the MainWindo
widget and you should not feel that you need to follow the Motif specifications to the letter. While the Style Guid

81

5 The Main Window 5.1 Creating a MainWindow

strongly recommends using the main window layout, many applications simply do not fit the standard GUI desic
model. For example, a clock application, a terminal emulator, a calculator, and a host of other desktop applications
not follow the Motif specifications in this regard, but they can still have Motif elements within them and can still be
regarded as Motif-compliant. If you already have an application in mind, chances are you already know whether
not the main window layout is suited to the application; if you are in doubt, your best bet is to comply with the Mot
Style Guide.

Before we start discussing the MainWindow widget, you should realize that this widget class does not create any
the widgets it manages. It merely facilitates managing the widgets in a way that is consistent with the Style Guide
order to discuss the MainWindow widget, we are going to have to discuss a number of other widget classes and
them in examples. As a beginning chapter in a large book on Motif programming, this may seem like a bit much
handle, especially if you are completely unfamiliar with the Motif toolkit. We encourage you to branch off into othe
chapters whenever you find it necessary to do so. However, it is not our intention to explain these other widgets ah
of time, nor is it our assumption that you already understand them. The lack of an understanding of the other widg
should not interfere with our goal of describing the MainWindow widget and how it fits into the design of ar
application.

5.1 Creating a MainWindow

The MainWindow widget class is defined in <Xm/MainW.h>, which must be included whenever you create
MainWindow widget. As mentioned in Chapter 2, The Motif Programming Model, you should probably use an
ApplicationShell or TopLevelShell widget as the parent of a MainWindow. If the MainWindow is being used as th
main application window, the ApplicationShell returned by XtVaApplnitialize() (or another similar toolkit
initialization function) is typically used as the parent. The function XtVaCreateManagedWidget() can be used

to create an instance of a MainWindow widget, as shown in the following code fragment:

#include <Xm/MainW.h>

main(argc, argv)
int argc;
char *argv[];

{
Widget toplevel, main_w;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtApplnitialize (&app, "App—Class",
NULL, 0, &argc, argv, NULL, NULL);
main_w = XtVaCreateManagedWidget ("mw",
xmMainWindowWidgetClass, toplevel,
resource—value-list,
NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

The MainWindow class is subclassed from the ScrolledWindow class, which means that it inherits all the attributes
a ScrolledWindow, including its resources. A ScrolledWindow allows the user to view an arbitrary widget of any size
by attaching horizontal and vertical ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the
additional ability to have an optional menu bar, command area, and message area. Because the MainWindow is
subclassed from the ScrolledWindow widget, we will be referring to some ScrolledWindow resources and disclosing
some facts about the ScrolledWindow. For more information about the ScrolledWindow, see Chapter 9,
ScrolledWindows and ScrollBars. You may eventually need to learn more about the ScrolledWindow widget to best

82

5 The Main Window 5.1 Creating a MainWindow

make use of the MainWindow, but this chapter tries to present the fundamentals of the MainWindow widget, rather
than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like any manager widget, th
geometry management it performs is not the classic management style of other manager widgets. The MainWindo
a special-case object that handles only certain types of children and performs only simple widget positioning. It
designed to support the generic main window layout specified by the Motif Style Guide.

Let's take a look at how the MainWindow can be used in an actual application. the source code demonstrates how
MainWindow widget fits into a typical application design. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4.

/* show_pix.c —— A minimal example of a MainWindow. Use a Label as the
* workWindow to display a bitmap specified on the command line.

*/

#include <Xm/MainW.h>

#include <Xm/Label.h>

main(argc, argv)
int argc;
char *argv[];

Widget toplevel, main_w, label;
XtAppContext app;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

if (largv[1]) {
printf ("usage: %s bitmap—file0, *argv);
exit (1);

}

main_w = XtVaCreateManagedWidget ("main_window",
xmMainWindowWidgetClass, toplevel,
XmNscrollBarDisplayPolicy, XmAS_NEEDED,
XmNscrollingPolicy, XmAUTOMATIC,
NULL);

[* Load bitmap given in argv[1] */

pixmap = XmGetPixmap (XtScreen (toplevel), argv[1],
BlackPixelOfScreen (XtScreen (toplevel)),
WhitePixelOfScreen (XtScreen (toplevel)));

if (pixmap == XMUNSPECIFIED_PIXMAP) {
printf ("can't create pixmap from %s0, argv[1]);
exit (1);

}

/* Now create label using pixmap */

label = XtVaCreateManagedWidget ("label", xmLabelWidgetClass, main_w,
XmNlabelType, XmPIXMAP,
XmNlabelPixmap, pixmap,
NULL);

/* set the label as the "work area" of the main window */

83

5 The Main Window 5.1 Creating a MainWindow

XtVaSetValues (main_w,
XmNworkWindow, label,
NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

In this example, the MainWindow widget is not used to its full potential. It only contains one other widget, a Label
widget, that is used to display a bitmap from the file specified as the first argument on the command line (argv[1]).
XtVaApplnitialize() parses the command-line arguments that are used when the program is run. The
command-line options that are specific to Xlib or Xt are evaluated and removed from the argument list. What is not
parsed is left in argv; our program reads argv[1] as the name of a bitmap to display in the MainWindow. The

Label widget is used as the work area window for the MainWindow. We did this intentionally to focus your attention
on the scrolled—window aspect of the MainWindow widget. The following command line:

% show_pix /usr/include/X11/bitmaps/xlogo64
produces the output shown in the figure.
The file specified on the command line should contain X11 bitmap data, so that the application can create a pixm
The pixmap is displayed in a Label widget, which has been specified as the XmNworkWindow of the MainWindow
As shown in the figure, the bitmap is simply displayed in the window. However, if a larger bitmap is specified, only

portion of the bitmap can be displayed, so ScrollBars are provided to allow the user to view the entire bitmap. T
output of the command:

% show_pix /usr/include/X11/bitmaps/escherknot

is shown in the figure.

~| show pix | |

Output of show_pix xlogo64

84

5 The Main Window 5.1 Creating a MainWindow

Output of show_pix escherknot

The bitmap is obviously too large to be displayed in the MainWindow without either clipping the image or enlargin
the window. Rather than resize its own window to an unreasonable size, the MainWindow can display ScrollBa
This behavior is enabled by setting the MainWindow resources XmNscrollBarDisplayPolicy to
XmAS_NEEDED and XmN-scrollingPolicy to XmAUTOMATIC. These values automate the process whereby
ScrollBars are managed when they are needed. If there is enough room for the entire bitmap to be displayed,
ScrollBars are not provided. Try resizing the show_pix window and see how the ScrollBars appear and disappea
needed. This behavior occurs as a result of setting XmNscrollBarDisplayPolicy to XmAS_NEEDED.

Since we do not specify a size for the MainWindow, the toolkit sets both the width and height to be 100 pixels. The:
default values are not a documented feature. Both the MainWindow and the ScrolledWindow suffer from the sar
problem: if you do not specifically set the -XmNwidth and XmNheight resources, the default size of the widget is
not very useful.

The XmNscrollBarDisplayPolicy and XmNscrollingPolicy resources are inherited from the
ScrolledWindow widget class. Because XmNscrollingPalicy is set to XmAUTOMATIC, the toolkit creates and
manages the ScrollBars automatically. Another possible value for the resource is XmAPPLICATION_DEFINEL
which implies that the application is going to create and manage the ScrollBars for the MainWindow and control all
the aspects of their functionality. Application—defined scrolling is the default style for the MainWindow widget, but if
is unlikely that you will want to leave it that way, since automatic scrolling is far easier to manage at this stage of t
game. For complete details on the different scrolling styles, see Chapter 9, ScrolledWindows and ScrollBars.

Using the application—defined scrolling policy does not necessarily require you to provide your own scrolling
mechanisms. It simply relieves the MainWindow widget of the responsibility of handling the scrolling mechanisms. |
you use a ScrolledList or ScrolledText widget as the work area, you should definitely leave the
XmNscrollingPolicy as XmAPPLICATION_DEFINED, since these widgets manage their own ScrollBars. They

will handle the scrolling behavior instead of the MainWindow. the source code shows an example of a program tt
uses a ScrolledList for the work area in a MainWindow widget. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4.

/* main_list.c —— Use the ScrolledList window as the feature
* component of a MainWindow widget.

*/

#include <Xm/MainW.h>

#include <Xm/List.h>

main(argc, argv)
char *argv[];

Widget toplevel, main_w, list_w;

85

5 The Main Window 5.1 Creating a MainWindow

XtAppContext app;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget ("main_window",
xmMainWindowWidgetClass, toplevel,
NULL);

list_w = XmCreateScrolledList (main_w, "main_list", NULL, 0);
XtVaSetValues (list_w,

XtVaTypedArg, XmNitems, XmRString,

"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,

XmNitemCount, 8,

XmNvisibleltemCount, 5,

NULL);
XtManageChild (list_w);

[* set the list_w as the "work area” of the main window */
XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}
In order to simplify the application, we specified the items in the ScrolledList as a single string:

XtVaSetValues(list_w,
XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8,
XmNuvisibleltemCount, 5,
NULL);

This technique provides the easiest way to specify a list for a List widget. The items in a List widget must be specifi
as an array of compound strings. If we took the time to create each list item separately, we would have to create ea
compound string, assemble the array of XmString objects and specify it as the XmNitems resource, and then free
each string separately after the widget was created. By using XtVaTypedArg, the whole list can be created in one
line using the List widget's type converter to convert the string into a list of compound strings. We use this form of
resource specification frequently in the book to simplify examples. See Volume Four, X Toolkit Intrinsics
Programming Manual, for a complete discussion on how this kind of type conversion is done. See Chapter 12, The
List Widget, for details on the List widget; see Chapter 19, Compound Strings, for details on compound strings.

It is important to note that while XmCreateScrolledList() creates both a ScrolledWindow widget and a List
widget, it returns the List widget. As a result, we must use XtParent() to get access to the ScrolledWindow
widget, so that it can be specified as the work area of the MainWindow. A common programming error with
ScrolledText or a ScrolledList widget is using the actual Text or List widget rather than its ScrolledWindow paren
Again, we refer you to Chapter 9, ScrolledWindows and ScrollBars, for a complete discussion of the use c
ScrolledText and ScrolledList compound objects.

86

5 The Main Window 5.2 The MenuBar

5.2 The MenuBar

Creating a MenuBar is a fairly complex operation, and one that is completely independent of the MainWindow itse
However, one of the principal reasons for using the MainWindow widget is that it manages the layout of a MenuB:
In this section, we demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been created,
simply tell the MainWindow to include it in the window layout by specifying the MenuBar as the value of the
XmNmenuBar resource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a set of CascadeButtons arran
horizontally in a RowColumn widget. Each CascadeButton is associated with a PulldownMenu that can conta
PushButtons, ToggleButtons, Labels, and Separators. The managing RowColumn widget has a resource set
indicating that it is being used as a MenuBar. You do not need to know any specific details about any of these widc
in order to create a functional MenuBar, since Motif provides convenience routines that allow you to crea
self-sufficient menu systems. While the specifics on creating PopupMenus, PulldownMenus, and MenuBars ¢
covered in more detail in Chapter 15, Menus, the basic case that we present in this section is quite simple.

There are a variety of methods that you can use to create and manage a MenuBar, but the easiest method is to u
convenience menu creation routine provided by the Motif toolkit: XmVaCreateSimpleMenuBar(). There is also

a non-varargs version of this function. It requires you to create each of the buttons in the MenuBar individually a
associate it with a PulldownMenu via resources. The varargs function is much easier to use. This function
demonstrated in the following code fragment:

XmString file, edit, help;
Widget menubar, main_w;

/* Create a simple MenuBar that contains three menus */

file = XmStringCreateLocalized ("File");

edit = XmStringCreatelLocalized ("Edit");

help = XmStringCreatelLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);

XmStringFree (edit);

XmStringFree (help);

The output generated by this code is shown in the figure.

Like XtVaSetValues() and XtVaCreateWidget(), XmVaCreateSimpleMenuBar() takes a
variable-length argument list of configuration parameters. In addition to resource/value pairs, it also takes spec
arguments that specify the items in the MenuBar. You can specify RowColumn-specific resource/value pairs just
you would for any varargs routine. Once all the items in a MenuBar have been created, it must be managed us
XtManageChild().

File Edit Help

87

5 The Main Window 5.2.1 Creating a PulldownMenu

A simple MenuBar

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant that identifies the type of t
item. Since CascadeButtons are the only elements that can display PulldownMenus, the first parameter should alv
be set to XmVaCASCADEBUTTON. The label of the CascadeButton is given by the second parameter, which mus
compound string. In the above example, the variable file contains a compound string that contains the text File.
The third parameter specifies an optional mnemonic character for the CascadeButton that can be used to pos
menu from the keyboard. The mnemonic for the File menu is F. By convention, the first letter of a menu or menu ite
label is used as the mnemonic.

We use the compound string creation function, XmStringCreateLocalized(), to create the compound strings

for the menu labels. This function creates a compound string with the text encoded in the current local
XmsStringCreatelLocalized() is a new routine in Motif 1.2; it replaces XmStringCreateSimple(),

which creates a compound string using the default character set associated with the widget in which the string
rendered. For a complete discussion of compound strings, see Chapter 19, Compound Strings.

Since you are not creating each CascadeButton using the normal creation routines, you are not returned a hanc
each button. You might think that the label string that you assign to each button is used as the widget's hame, but
is not the case. The buttons are created sequentially, so the MenuBar assigns the name button_n to each button. T
value n is the position of the button in the MenuBar, where positions are numbered starting with 0 (zero). We w
discuss how you can specify resources for items on the MenuBar later in the chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you need to know when a partict
menu is popped up, you should use the XmNpopupCallback on the MenuShell that contains the PulldownMenu
associated with the CascadeButton. The popup and popdown callback lists are described briefly in Chapter 7, Cust
Dialogs; for more information, see Volume Four, X Toolkit Intrinsics Programming Manual.

5.2.1 Creating a PulldownMenu

Every CascadeButton in a MenuBar must have a PulldownMenu associated with it. You can create the items i
PulldownMenu using a method that is similar to the one for creating a MenuBar. A PulldownMenu can be creat
using the function XmVaCreateSimplePulldownMenu(). This routine is slightly more involved than
XmVaCreateSimpleMenuBar(). The routine takes the following form:

Widget
XmVaCreateSimplePulldownMenu (parent, name, post_from_button,
callback, ...)
Widget parent;
String name;
int post_from_button;
XtCallbackProc callback;

The post_from_button parameter specifies the CascadeButton that posts the PulldownMenu. This parameter is

an index (starting at zero) into the array of CascadeButtons in the parent widget, which should be a MenuBar. The
name parameter specifies the widget name for the RowColumn widget that is the PulldownMenu. This name is not
the title of the CascadeButton associated with the menu. The MenuShell that contains the PulldownMenu uses the
same name with _popup appended to it. The callback parameter specifies a function that is invoked whenever the
user activates any of the items in the menu. The rest of the arguments to XmVaCreateSimplePulldownMenu()

are either RowColumn resource/value pairs or special arguments that specify the items in the PulldownMenu.

88

5 The Main Window 5.2.1 Creating a PulldownMenu

You should not manage a PulldownMenu after you create it because you do not want it to appear until it is postec
the user. The CascadeButton that posts the menu handles -managing the menu when it needs to be displayed
following code fragment shows the use of XmVaCreateSimplePulldownMenu() to create a PulldownMenu:

XmString open, save, quit, quit_acc;
Widget menubar, menu;

[* First menu is the File menu —- callback is file_cb() */

open = XmStringCreateLocalized ("Open...");

save = XmStringCreatelLocalized ("Save...");

quit = XmStringCreateLocalized ("Quit");

quit_acc = XmStringCreatelLocalized ("Ctrl-C");

menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q’, "Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (open);

XmStringFree (save);

XmStringFree (quit);

XmStringFree (quit_acc);

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can contain a number of different typ
of elements. As with XmVaCreateSimpleMenuBar(), these elements are specified by a symbolic constant that
identifies the type of the item. The symbolic constant is followed by a variable number of additional parameters tf
depend on the type of the menu item. You can use the following values to specify the items in a PulldownMenu:

XmVaPUSHBUTTON

The item is a PushButton. It takes four additional parameters: a compound string label, a mnemonic, an
accelerator, and a compound string that contains a text representation of the accelerator. When the PushBu
is selected, the callback routine is called. It is passed an integer value as client_data that indicates the
item on the PulldownMenu that was activated. The value is an index into the menu that ranges from 0 to n-:
if client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON

The item is a ToggleButton. It takes the same four additional parameters as described for
XmVaPUSHBUTTON. When the ToggleButton is selected, the value of the button is toggled and the
callback routine is called. The client_data that is passed to the callback routine is handled the same
as for PushButtons.

XmVaCHECKBUTTON

This value is identical to XmVaTOGGLEBUTTON.
XmVaRADIOBUTTON

The item is a ToggleButton with RadioBox characteristics, which means that only one item in the menu can
be set at a time. The PulldownMenu does not enforce this behavior, so you must either handle it yourself or
specify other RowColumn resources to make the menu function like a RadioBox. We demonstrate creating
menu with RadioBox behavior later in the chapter. This value takes the same additional parameters and dec
with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON

89

5 The Main Window 5.2.2 SimpleMenu Callback Routines

The item is a CascadeButton, which is usually associated with a pullright menu. The value takes two

additional parameters: a compound string label and a mnemonic. Pullright menus are, ironically, easier to

implement and manage using the not—-so-simple menu creation routines described in Chapter 15, Menus.
XmVaSEPARATOR

The item is a Separator and it does not take any additional parameters. Since separators cannot be selecte

callback routine is not called for this item. Adding a separator does not affect the item count with respect to

the client_data values that are passed to the callback routine for other menu items.
XmVaSINGLE_SEPARATOR

This value is identical to XmVaSEPARATOR.
XmVaDOUBLE_SEPARATOR

This value is identical to XmVaSEPARATOR, except that the separator widget displays a double line instear
a single line.
XmVaTITLE

The item is a Label that is used to create a title in a menu. It takes one additional parameter: a compound
string label. The item is not selectable, so it does not have a mnemonic associated with it and it does not ca
the callback routine. Adding a title does not affect the item count with respect to the client_data values

that are passed to the callback routine for other menu items.

Just as with the CascadeButtons in a MenuBar, the labels associated with each menu item are not the nam
the widgets themselves. The names of the buttons are button_n, where n is the position of the button in the
menu (starting with zero). Similarly, the names of the separators and the titles are separator_n and
label_n, respectively. We will discuss how you can use resources to specify labels, mnemonics, and
accelerators for menus and menu items later in the chapter.

Menus are not intended to be changed dynamically. You should not add, delete, or modify the menus on-
MenuBar or the menu items in PulldownMenus once an application is running. Rather than delete an item
a menu when it is not appropriate, you should change the sensitivity of the item using XmNsensitive. The
menus in an application should be static in the user's eyes; changing the menus would be like changing
functionality of the program while the user is running it. The one exception to this guideline involves men
items that correspond to dynamic objects. For example, if you have a menu that contains an item for e
application that is running on a display, it is acceptable for the items on the menu to change to reflect t
current state of the display.

5.2.2 SimpleMenu Callback Routines

The callback routine associated with the File menu shown earlier is invoked whenever the user selects any of
buttons in the menu. Just like any callback, the routine takes the form of an XtCallbackProc:

void

file_cb (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

The widget parameter is a handle to the widget that was selected in the menu. The -client_data parameter is the

index of the menu item in the menu. The call_data parameter is a pointer to a callback structure that contains data
about callback. Both the -client_data and call_data parameters should be cast to their appropriate types

90

5 The Main Window 5.2.2 SimpleMenu Callback Routines

before the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest such structure is of tyy
XmAnyCallbackStruct, which has the following form:

typedef struct {
int reason;
XEvent *event;
} XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain more detailed information about why
the callback function was invoked. The callback routine for the File menu would be passed an
XmPushButtonCallbackStruct, since all of the menu items are PushButtons. This structure has the following

form:

typedef struct {
int reason;
XEvent *event;
int click_count;
} XmPushButtonCallbackStruct;

The click_count field is not normally used when a PushButton is in a menu. If one of the items in the menu were
a ToggleButton, the call_data parameter would be of type XmToggleButtonCallbackStruct, which has
the following form:

typedef struct {
int reason;
XEvent *event;
int set;
} XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (turned off).

When a menu contains both PushButtons and ToggleButtons, you can determine which of the two callback structt
the call_data parameter points to by examining the reason field. Since all callback structures have this field, it

is always safe to query it. As its name implies, this field indicates why the callback routine was invoked. The value
this field may also indicate the type of the widget that invoked the callback. While we can always determine the ty
of the widget parameter by using the macro XtlsSubClass(), using the reason field is more straightforward.

The PushButton widget uses the value XmCR_ACTIVATE to indicate that it has been activated, while t
ToggleButton uses XmCR_VALUE_CHANGED to indicate that its value has been changed. In our example
reason will always be XmCR_ACTIVATE, since there are only PushButtons in the menu. If there were alsc
ToggleButtons in the menu, we would know that the callback was invoked by a ToggleButton if the value wer
XmCR_VALUE_CHANGED.

The event field in all of the callback structures is a pointer to an XEvent structure. The XEvent identifies the
actual event that caused the callback routine to be invoked. In this example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item that was selected. The callb:
structure is probably not going to be of that much help in most cases. However, the client_data passed to the
function can be used to identify which of the menu items was selected. The following code fragment demonstrates
use of -client_data:

/* a menu item from the "File" pulldown menu was selected */

91

5 The Main Window 5.2.3 A Sample Application

void

file_cb(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{
extern void OpenNewFile(), SaveFile();
int item_no = (int) client_data;

if (item_no == 0) /* the "new" button */
OpenNewrFile ();
else if (item_no == 1) /* the "save" button */
SaveFile();
else /* the "Quit" button */
exit (0);
}

The callback routines for menu items should be as simple as possible from a structural point of view. A well-design
application should have application—specific entry points such as OpenNewFile() and SaveFile(), as shown in

the previous example. These routines should be defined in separate files that are not necessarily associated with tf
user—interface portion of the program. The use of modular programming techniques helps considerably when an
application is being maintained by a large group of people or when it needs to be ported to other user-interface
platforms.

5.2.3 A Sample Application

Let's examine an example program that integrates what we have discussed so far. Example 4-3 modifies the beha
of our first example, which displayed an arbitrary pixmap, by allowing the user to change the bitmap dynamical
using a Motif FileSelectionDialog. The program also allows the user to dynamically change the color of the bitme
using a PulldownMenu. As you can see by the size of the program, adding these two simple features is not triv
Many functions and widgets are required in order to make the program functional. As you read the example, dc
worry about unknown widgets or details that we haven't addressed just yet; we will discuss them afterwards. For n
just try to identify the familiar parts and see how everything works together. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4. XmStringCreatelLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.
XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

/* dynapix.c —— Display a bitmap in a MainWindow, but allow the user

* to change the bitmap and its color dynamically. The design of the

* program is structured on the pulldown menus of the menubar and the
* callback routines associated with them. To allow the user to choose
* a new bitmap, the "Open" button pops up a FileSelectionDialog where
* a new bitmap file can be chosen.

*

#include <Xm/MainW.h>

#include <Xm/Label.h>

#include <Xm/MessageB.h>

#include <Xm/FileSB.h>

/* Globals: the toplevel window/widget and the label for the bitmap.

* "colors" defines the colors we use, "cur_color" is the current

* color being used, and "cur_bitmap" references the current bitmap file.

*/

Widget toplevel, label;

String colors[] = { "Black”, "Red", "Green", "Blue" };

Pixel cur_color;

char cur_bitmap[1024] = "xlogo64"; /* make large enough for full pathnames */

92

5 The Main Window

main(argc, argv)
int argc;
char *argv[];
{
Widget main_w, menubar, menu, widget;
XtAppContext app;
Pixmap pixmap;
XmString file, edit, help, open, quit, red, green, blue, black;
void file_ch(), change_color(), help_ch();

XtSetLanguageProc (NULL, NULL, NULL);

[* Initialize toolkit and parse command line options. */
toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

/* main window contains a MenuBar and a Label displaying a pixmap */
main_w = XtVaCreateManagedWidget ("main_window",
xmMainWindowWidgetClass, toplevel,
XmNscrollBarDisplayPolicy, XmAS_NEEDED,
XmNscrollingPolicy, XmAUTOMATIC,
NULL);

[* Create a simple MenuBar that contains three menus */

file = XmStringCreateLocalized ("File");

edit = XmStringCreatelLocalized ("Edit");

help = XmStringCreateLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar”,
XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);

XmStringFree (edit);

[* don't free "help" compound string yet —— reuse it later */

[* Tell the menubar which button is the help menu */
if (widget = XtNameToWidget (menubar, "button_2"))
XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

[* First menu is the File menu —— callback is file_cb() */

open = XmStringCreateLocalized ("Open...");

quit = XmStringCreatelLocalized ("Quit");

XmVacCreateSimplePulldownMenu (menubar, "file_menu", 0O, file_cb,
XmVaPUSHBUTTON, open, 'N', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

XmStringFree (open);

XmStringFree (quit);

[* Second menu is the Edit menu —— callback is change_color() */

black = XmStringCreateLocalized (colors[0]);

red = XmStringCreatelLocalized (colors[1]);

green = XmStringCreatelLocalized (colors[2]);

blue = XmStringCreateLocalized (colors[3]);

menu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, change_color,
XmVaRADIOBUTTON, black, 'k, NULL, NULL,
XmVaRADIOBUTTON, red, 'R', NULL, NULL,
XmVaRADIOBUTTON, green, 'G', NULL, NULL,

5.2.3 A Sample Application

93

5 The Main Window 5.2.3 A Sample Application

XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
XmNradioBehavior, True, /* RowColumn resources to enforce */
XmNradioAlwaysOne, True, /* radio behavior in Menu */
NULL);

XmStringFree (black);

XmStringFree (red);

XmStringFree (green);

XmStringFree (blue);

/* Initialize menu so that "black” is selected. */
if (widget = XtNameToWidget (menu, "button_0"))
XtVaSetValues (widget, XmNset, True, NULL);

[* Third menu is the help menu —- callback is help_cb() */
XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,
XmVaPUSHBUTTON, help, 'H', NULL, NULL,
NULL);
XmStringFree (help); /* we're done with it; now we can free it */

XtManageChild (menubar);

[* user can still specify the initial bitmap */
if (argv[1])
strcpy (cur_bitmap, argv[1]);
/* initialize color */
cur_color = BlackPixelOfScreen (XtScreen (toplevel)),

[* create initial bitmap */
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap,
cur_color, WhitePixelOfScreen (XtScreen (toplevel)));

if (pixmap == XMUNSPECIFIED_PIXMAP) {
puts ("can't create initial pixmap");
exit (1);

}

/* Now create label using pixmap */

label = XtVaCreateManagedWidget ("label", xmLabelWidgetClass, main_w,
XmNlabelType, XmPIXMAP,
XmNlabelPixmap, pixmap,
NULL);

/* set the label as the "work area" of the main window */
XtVaSetValues (main_w,

XmNmenuBar, menubar,

XmNworkWindow, label,

NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Any item the user selects from the File menu calls this function.
* |t will either be "Open" (item_no == 0) or "Quit" (item_no == 1).

*/

void

file_cb(widget, client_data, call_data)

Widget widget; /* menu item that was selected */

XtPointer client_data; /* the index into the menu */
XtPointer call_data; /* unused */

{

94

5 The Main Window

static Widget dialog; /* make it static for reuse */
extern void load_pixmap();
int item_no = (int) client_data;

if (item_no == 1) /* the "quit" item */
exit (0);

[* "Open" was selected. Create a Motif FileSelectionDialog w/callback */
if (!dialog) {
dialog = XmCreateFileSelectionDialog (toplevel, "file_sel", NULL, 0);
XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
XtAddCallback (dialog, XmNcancelCallback, XtUnmanageChild, NULL);
}
XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

}

/* The OK button was selected from the FileSelectionDialog (or, the user
* double-clicked on a file selection). Try to read the file as a bitmap.
* |f the user changed colors, we call this function directly from change_color()
* to reload the pixmap. In this case, we pass NULL as the callback struct
* so we can identify this special case.
*/
void
load_pixmap(dialog, client_data, call_data)
Widget dialog;
XtPointer client_data;
XtPointer call_data;
{
Pixmap pixmap;
char *file = NULL;
XmpFileSelectionBoxCallbackStruct *cbs =
(XmFileSelectionBoxCallbackStruct *) call_data;

if (cbs) {
if (IXmStringGetLtoR (cbs—->value, XmFONTLIST_DEFAULT_TAG, &file))
return; /* internal error */
(void) strcpy (cur_bitmap, file);
XtFree (file); /* free allocated data from XmStringGetLtoR() */
}

pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap,
cur_color, WhitePixelOfScreen (XtScreen (toplevel)));

if (pixmap == XmMUNSPECIFIED_PIXMAP)
printf ("Can't create pixmap from %s0, cur_bitmap);
else {
Pixmap old;
XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
XmDestroyPixmap (XtScreen (toplevel), old);
XtVaSetValues (label,
XmNIlabelType, XmPIXMAP,
XmNlabelPixmap, pixmap,
NULL);
}
}

/* called from any of the "Edit" menu items. Change the color of the
* current bitmap being displayed. Do this by calling load_pixmap().
*

/
void

5.2.3 A Sample Application

95

5 The Main Window 5.2.3 A Sample Application

change_color(widget, client_data, call_data)
Widget widget; /* menu item that was selected */
XtPointer client_data; /* the index into the menu */
XtPointer call_data; /* unused */
{
XColor xcolor, unused;
Display *dpy = XtDisplay (label);
Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
int item_no = (int) client_data;

if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0 ||
cur_color == xcolor.pixel)
return;

cur_color = xcolor.pixel;
load_pixmap (widget, NULL, NULL);
}

#define MSG "Use the FileSelection dialog to find bitmap files toOisplay in the scrolling area in the main window. UseOhe edit menu to c

/* The help button in the help menu from the menubar was selected.
* Display help information defined above for how to use the program.
* This is done by creating a Motif information dialog box. Again,

* make the dialog static so we can reuse it.

*/

void

help_cb(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{
static Widget dialog;

if (Idialog) {
Arg args[5];
intn=0;
XmString msg = XmStringCreateLtoR (MSG, XmFONTLIST_DEFAULT_TAG);
XtSetArg (args[n], XmNmessageString, msg); n++;
dialog = XmCreatelnformationDialog (toplevel, "help_dialog", args, n);
}
XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

}

The output of the program is shown in the figure.

96

5 The Main Window 5.2.3 A Sample Application

| [
=| dyniapix [=]
File Edit Holp

Output of dynapix.c

The beginning of the program is pretty much as expected. After the toolkit is initialized, the MainWindow and th
MenuBar are created the same way as in the previous examples. Just after the MenuBar is created, however, we |
the following calls:

if (widget = XtNameToWidget (menubar, "button_2"))
XtVaSetValues(menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeButtons contains the Help menu.
Setting the MenuBar's XmNmenuHelpWidget resource to the CascadeButton returned by XtNameToWidget()
causes the MenuBar to position the menu specially. The Help menu is placed at the far right on the MenuBar; this
position is necessary for the application to conform to Motif sytle guidelines. For details on how to support a help
system, see Chapter 7, Custom Dialogs, and Chapter 21, Advanced Dialog Programming.

PulldownMenus are created next in the expected manner. The only variation is for the Edit menu, where each itern
the menu represents a color. Since only one color can be used at a time, the color that is currently being use
marked with a diamond-shape indicator. In order to get this radio—box behavior, each menu item in tt
PulldownMenu is a XmVaRADIOBUTTON and the menu is told to treat the items as a RadioBox. The analogy is
of an old car radio, where selecting a new station causes the other selectors to pop out. Just as you can only hav
radio tuned to one station at a time, you may only have one color set at a time. The RadioBox functionality
managed automatically by the RowColumn widget that is used to implement the PulldownMenu. Setting tt
XmNradioBehavior and XmN-radioAlwaysOne RowColumn resources to True provides the RadioBox
behavior. See Chapter 11, Labels and Buttons, for a complete description and further examples of this type
behavior. the figure shows the RadioBox-style Edit menu.

97

5 The Main Window 5.2.3 A Sample Application

File Edit I
v Blac1£|

Red

Green
Elme

The Edit menu for dynapix.c

Although the RowColumn manages the RadioBox automatically, we need to turn the radio on by setting the initi
color. After the PulldownMenu is created, the menu (RadioBox) is initialized so that its first item is selected, since v
know that we are using black as the initial color. XtNameToWidget() is used again to get the appropriate button
from the menu. Since the menu items were created using XmVaRADIOBUTTON, the widget that is returned
ToggleButton. The XmNset resource is used to turn the button on. Once the menu has been initialized, the Mc
toolkit handles everything automatically.

Note that when we create the Help menu, there is only one item in the menu. You might think that it is redundant
have a single Help item in the Help menu, but this design is an element of Motif style. The Motif Style Guide stat
that items on the MenuBar should always post PulldownMenu, not perform application actions directly.

It is important to note that XmVaCreateSimplePulldownMenu() returns the RowColumn widget that contains

the items in the menu, even though the routine creates both the RowColumn widget and its MenuShell parent.
routine does not return the MenuShell widget that is actually popped up and down when the menu posted. To g
handle to that widget, you need to use XtParent() on the RowColumn widget. This design makes sense, since you
need access to the RowColumn widget much more often than you need access to the MenuShell.

Once all of the items have been installed, the MenuBar is managed using XtManageChild(). The approach to
creating MenuBars, PulldownMenus, menu items, and their associated callback routines that we have described |
is meant to be simple and straightforward. In some cases, you may find that these techniques are too limiting.
example, you cannot specify different callback routines for different items in the same menu, you cannot pa
different client data for different items, and you cannot name the widgets individually. The most inconvenient aspe
of this method, however, is that it requires so much redundant code in order to build a realistically sized MenuB
Our intent here is to introduce the basic concepts of menus and to demonstrate the recommended design approac
applications. We describe how the menu creation process can be generalized for large menu systems in Chapter
Menus.

The rest of the source code is composed of callback routines that are used by the PulldownMenu items. For exan
when the user selects either of the items in the File menu, the function file_cb() is called. If the Quit item is
selected, the -client_data parameter is 1 and the program exits. If the Open item is selected, client_data is

0 and a FileSelectionDialog is popped up to allow the user to select a new bitmap file. The dialog is created using
convenience routine XmCreateFileSelectionDialog(), which produces the results shown in the figure. Two
callback routines are installed for the dialog: load_pixmap(), which is called when the user presses the OK

98

5 The Main Window 5.2.3 A Sample Application

button, and -XtUnmanageChild(), which is called when the user selects the Cancel button. For more detailed
information on the FileSelectionDialog, see Chapter 6, Selection Dialogs.

The load_pixmap() function loads a new bitmap from a file and displays it in the Label widget. This function uses
the same method for loading a pixmap as was used earlier in main(). Since the function is invoked as a callback &
the FileSelectionDialog, we need to get the value of the file selection. The value is taken from the value field of the
FileSelectionDialog's callback structure, XmFileSelectionBoxCallbackStruct. Since the filename is
represented as a compound string, it must be converted to a character string. The conversion is done u:
XmStringGetLtoR(), which creates a regular C string for use by XmGetPixmap(). The load_pixmap()

routine is also called directly from change_color(), so we need to check the call_data parameter. This
parameter is NULL if the routine is not invoked as a callback.

If XmGetPixmap() succeeds, we get the old pixmap and destroy it using XmDestroyPixmap() before we install

the new pixmap. XmGetPixmap() loads and caches a pixmap. If the function is called more than once for a given
image, it returns the cached image, which saves space because a new version of the pixmap is not allocated for
call. XmDestroyPixmap() decrements the reference count for the image; if the reference count reaches to zero, the
pixmap is actually destroyed. Otherwise, another reference to it may exist, so nothing is done. It is important to
these two functions in conjunction with each other. However, if you use other pixmap-loading functions to crea
pixmaps, you cannot use XmDestroyPixmap() to free them.

]
=| fik_sel_pupup

Filter
| Ause ficeluds S0 Bz bnags 4

Lirectorica Filca
_de/ZL1 01 zmaps S 2 A=l
cde/Z1l1 foazmaps). . exd
Caokco
Cowr.

Ex=

F ijAuix
Foirvar-
Folc £
2 p— - = =

Se:lec:linn

L

£

| Ause ficelud=S0C Bz bnans £

OK | | Pilter | cCancet| Hep
1 1

The FileSelectionDialog for dynapix.c

The function change_color() is used as the callback routine for items in the Edit menu. The names of the colors
are stored in the colors array. The index of a color in this array is the same as the index of the corresponding men
item in the menu. The color name is parsed and loaded using XAllocNamedColor(), provided that the string
exists in the RGB database (usually /usr/lib/X11/rgb.txt). If the routine is successful, it returns a non—zero status ¢
the XColor structure is filled with the RGB data and pixel value. In this case, load_pixmap() is called to reload

the pixmap with the new color. If XAllocNamedColor() returns zero, or if the returned pixel value is the same as

99

5 The Main Window 5.3 The Command and Message Areas

the current one, change_color() returns, as there is no point in reloading an identical pixmap. For additional
information about loading and using colors, see Volume One, Xlib Programming Manual, and Volume Two, Xlib
Reference Manual.

The help_cb() function is the callback routine for the Help menu item on the Help menu. It simply displays an
InformationDialog that contains a message describing how to use the program. See Chapter 5, Introduction
Dialogs, and Chapter 21, Advanced Dialog Programming, for a complete description of these dialogs an
suggestions on implementing a functional help system.

5.3 The Command and Message Areas

We have already covered most of what you need to know about the MainWindow of an application in this chapter &
Chapter 3, Overview of the Motif Toolkit. The material in the rest of the chapter is considered somewhat advanced,
you could skip the remaining sections and be relatively secure in moving on to the next chapter. The remaini
material provides details about the MainWindow widget that need to be discussed in order to make this chap
complete.

The greatest difficulty with the command and message areas of the MainWindow is that these objects are be
defined in the Motif specification than in the Motif toolkit. The command area is intended to support a tty—styls
command-line interface to an application. The command area is not supposed to act like xterm or any sort of term
emulator; it is just a single—line text area for entering individually typed commands for an application. The messa
area is just an output—only area that is used for error and status messages as needed by an application. While bc
these areas are optional MainWindow elements, the message area is usually more common than the command
Nevertheless, let's begin by discussing the command area.

A command area is especially convenient for applications that are being converted from a tty—style interface tc
graphical user interface. Properly converted, such applications can do rather well as GUl-based programs, altho
the conversion can be more difficult than you might expect. For example, a PostScript interpreter could |
implemented using a command area in the MainWindow. However, since PostScript is a verbose language, it does
work well with single-line text entry fields.

the source code shows how the command area can be used to allow the user to input standard UNIX commands.
output of the commands is displayed in the ScrolledText object, which is the work area of the MainWindow. Fc
simplicity, we've kept the MenuBar small so as to dedicate most of the program to the use of the command ar
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreatelLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1. XmFONTLIST_DEFAULT _TAG replaces XmSTRING_DEFAULT CHARSET i
Motif 1.2.

/* cmd_area.c —— use a ScrolledText object to view the

* output of commands input by the user in a Command window.
*/

#include <Xm/Text.h>

#include <Xm/MainW.h>

#include <Xm/Command.h>

#include <stdio.h> /* For popen() */

/* main() —- initialize toolkit, create a main window, menubar,

*a Command Area and a ScrolledText to view the output of commands.
*

main(argc, argv)

int argc;

char *argv[];

100

5 The Main Window

Widget top, main_w, menubar, menu, command_w, text_w;
XtAppContext app;

XmString file, quit;

extern void exec_cmd(), exit();

Arg args[5];

int n=0;

XtSetLanguageProc (NULL, NULL, NULL);

[* initialize toolkit and create toplevel shell */
top = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

(void) close (0); /* don't let commands read from stdin */

/* MainWindow for the application —— contains menubar, ScrolledText

* and CommandArea (which prompts for filename).

*

main_w = XtVaCreateManagedWidget ("main_w",
xmMainWindowWidgetClass, top,

5.3 The Command and Message Areas

XmNcommandWindowLocation, XmMCOMMAND_BELOW_WORKSPACE,

NULL);

[* Create a simple MenuBar that contains one menu */

file = XmStringCreateLocalized ("File");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar”,
XmVaCASCADEBUTTON, file, 'F',
NULL);

XmStringFree (file);

[* "File" menu has only one item (Quit), so make callback exit() */

quit = XmStringCreateLocalized ("Quit");

menu = XmVaCreateSimplePulldownMenu (menubar, “file_menu", 0, exit,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

XmStringFree (quit);

/* Menubar is done —— manage it */
XtManageChild (menubar);

* Create ScrolledText —— this is work area for the MainWindow */
XtSetArg (args[n], XmNrows, 24); n++;

XtSetArg (args[n], XmNcolumns, 80); n++;

XtSetArg (args[n], XmNeditable, False); n++;

XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
text_w = XmCreateScrolledText (main_w, "text_w", args, n);
XtManageChild (text_w);

[* store text_w as user data in "File" menu for file_cb() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

[* Create the command area —- this must be a Command class widget */
file = XmStringCreateLocalized ("Command:");

command_w = XtVaCreateWidget ("command_w", xmCommandWidgetClass, main_w,

XmNpromptString, file,
NULL);
XmStringFree (file);

XtAddCallback (command_w, XmNcommandEnteredCallback, exec_cmd, text_wy);

XtManageChild (command_w);

101

5 The Main Window 5.3 The Command and Message Areas

XmMainWindowSetAreas (main_w, menubar, command_w,
NULL, NULL, XtParent (text_w));
XtRealizeWidget (top);
XtAppMainLoop (app);
}

/* execute the command and redirect output to the ScrolledText window */
void

exec_cmd (cmd_widget, client_data, call_data)

Widget cmd_widget; /* the command widget itself, not its Text widget */
XtPointer client_data; /* passed the text_w as client_data */

XtPointer call_data;

{
char *cmd, buf[BUFSIZ];

XmTextPosition pos;

FILE *pp, *popen();

Widget text_w = (Widget) client_data;

XmCommandCallbackStruct *cbs =
(XmCommandCallbackStruct *) call_data;

XmStringGetLtoR (cbs—>value, XmFONTLIST_DEFAULT_TAG, &cmd);

if (lcmd || *cmd) { /* nothing typed? */
if (cmd)
XtFree (cmd);
return;

}

[* make sure the file is a regular text file and open it */

if (I(pp = popen (cmd, "r")))
perror (cmd);
XtFree (cmd);

if ('pp)
return;

[* put the output of the command in the Text widget by reading

* until EOF (meaning that the command has terminated).

*

for (pos = 0; fgets (buf, sizeof buf, pp); pos += strlen (buf))
XmTextReplace (text_w, pos, pos, buf);

pclose (pp);

This example uses a Command widget for the command area. The output of the program is shown in the figure. Th
Command widget provides a command entry area and a command history area. However, you do not necessarily h
to use a Command widget for the command area. A TextField widget can be used instead to provide a simple
command area.

When we created the MainWindow, we set the XmNcommandWindowLocation resource to
XmCOMMAND_BELOW_WORKSPACE, which caused the command area to be placed below the work wi
Although the default value of the resource is XmCOMMAND_ ABOVE_WORKSPACE, the Style Guide recommenc
the command area be positioned beneath the work window, rather than above it. You need to explicitly set the ve
of XmN-commandWindowLocation to ensure that the command area is positioned appropriately.

Note that we use the ScrolledWindow that is created by XmCreateScrolledText() for the work window, rather

than the scrolling area provided by the MainWindow. Since XmCreateScrolledText() returns a Text widget,
we are careful to use the parent of the Text widget for the XmNworkWindow resource of the MainWindow. We se

102

5 The Main Window 5.3 The Command and Message Areas

the areas of the MainWindow using XmMainWindowSetAreas(), which is a convenience function that tells the
MainWindow which of its child widgets should be used for its different predefined areas. The routine takes th
following form:

void
XmMainWindowSetAreas (main_w, menubar, cmd_w, h_scroll,
v_scroll, work_w)
Widget main_w;
Widget menubar;
Widget cmd_w;
Widget h_scroll;
Widget v_scroll;
Widget work_w;

— O]

cmil_awea |

Troman smoe [e 33y Levneep 500 10
Kewie Lowsr, Berlizley
Uraic _erss, Berkaley
W=rk Harton, Rerkaley

IR R

Plecaoe marl skangeo =c (Sroonsti: =crmcaoBho:
x
se il koo

= i =

sas Jebedmokd

Comrxanand!:

head -30 sfezcf/zermeag

Output of cmd_area.c

The function is really a front end for XmScrolledWindowSetAreas(). Basically, both of these functions
manage the appropriate widgets so that they appear in the correct locations in the MainWindow, while making si
there is enough space for all of them to be visible. Neither function is entirely necessary, though. When you creat
widget as a child of a MainWindow widget, the MainWindow checks the type of the widget you are adding. If the ne'
widget is a RowColumn that is being used as a MenuBar (XmNrowColumnType is XmMENU_BAR), th
MainWindow automatically uses it for the menu bar. This same check is performed for a Command widget, which
automatically used as the command area. The MainWindow also provides resources for its different areas that you
set using XtVaSetValues(). The resources you can use are:

XmNmenuBar
XmNcommandWindow

103

5 The Main Window 5.4 Using Resources

XmNverticalScrollBar
XmNhorizonalScrollBar
XmNworkWindow
XmNmessageWindow

Once one of these values is set, it cannot be reset to NULL, although it can be reset to another widget. However,
XmMainWindowSetAreas() can be used to set the different areas to NULL. You should only use this routine

when you are doing the initial layout of your application; changing the major elements of the MainWindow while an
application is running would be quite disruptive.

You might notice that XmMainWindowSetAreas() does not have a parameter to specify the widget that is used as
the message area. There is, however, a resource to support the message area. The message area is important |
applications, since it is typically the place where brief status and informational messages are displayed. The mes:
area can be implemented using different widgets, such as a read—-only Text widget, a read—only ScrolledText obj
or a Label widget. Using a Label widget as the message area is quite simple and really doesn't require any explana
Chapter 14, Text Widgets, describes how to use a read-only text area for the message area in a MainWindov
Section #soutputtext.

If you specify the XmNmessageWindow resource, the message area is positioned across the bottom of tl
MainWindow. If you are not satisfied with how the MainWindow handles the layout of the message area, you c:
make the message area widget a child of the work area manager widget and handle the layout yourself.

5.4 Using Resources

Resources specific to the MainWindow and its sub—elements can be useful when configuring the default appeara
of your application. If you set these resources in an app—defaults file, the specifications can also provide a framew:
for users to follow when they want to set their own configuration parameters. Even users who are sophisticalt
enough to figure out how X resource files work still copy existing files and modify them to their own tastes. To assi
users, the app—defaults file for an application should be informative and complete, even though it might be lengthy.

Of course, the first step in specifying resources in an app—defaults file is to determine exactly which aspects of
program you want to be configurable. Remember, consistency is the only way to keep from completely confusing
user. Once you have decided which portions of the application are going to be configurable, you can set resot
values by specifying complete widget hierarchies. As an example, let's specify some resources for the menu sys
from dynapix.c. The application creates the File menu in the following way:

XmVaCreateSimplePulldownMenu(menubar, "file_menu", 0, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,

XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

We can add accelerators to both the Open and Quit menu items using the following resource specifications:

dynapix.main_window.menubar*button_0.accelerator: Ctrl<Key>0O
dynapix.main_window.menubar*button_0.acceleratorText: Ctrl+O
dynapix.main_window.menubar*button_1.accelerator: Ctrl<Key>C
dynapix.main_window.menubar*button_1.acceleratorText: Ctrl+C

The result is shown in the figure.

104

5 The Main Window 5.5 Summary

File | Edit
" Open... Ctrl+O|
guit Ctrl+C

VA U

The File menu for dynapix.c with accelerators

These resource settings work because XmNaccelerator and XmNacceleratorText were not hard—coded by

the application. By the same token, the labels of the MenuBar titles and the menu items in the PulldownMenus
hard-coded values that cannot be modified through resources. To relax this restriction, you could try setting t
label and mnemonic parameters to NULL in calls to XmVaCreateSimplePulldownMenu(). Unfortunately,

this technique makes resource specification awfully messy, since the CascadeButtons in the MenuBar and the var
PulldownMenus all have names of the form button_n. The other alternative is to use the more advanced methods o
menu creation that are described in Chapter 15, Menus.

The MainWindow provides a few other resources that control different visual attributes: -XmNshowSeparator,
XmNmainWindowMarginWidth, and XmNmainWindowMarginHeight. The XmNshowSeparator resource

controls whether or not Separator widgets are displayed between the different areas of a MainWindow. The mar
resources specify the width and height of the MainWindow's margins. Generally, these resources should not be se
the application, but left to the user to specify. For example:

*XmMainWindow.showSeparator: True
*XmMainWindow.mainWindowMarginWidth: 10
*XmMainWindow.mainWindowMarginHeight: 10

The class name for the MainWindow widget is XmMainWindow. If these resource settings were specified in an
app—defaults file, they would affect all of the MainWindow widgets in the application. If a user makes these
specifications in his .Xdefaults file, they would apply to all MainWindow widgets in all applications.

5.5 Summary

This chapter introduced you to the concepts involved in creating the main window of an application. To a less
degree, we showed you how the MainWindow widget can be used to accomplish some of the necessary tasks.
identified the areas involved in a MainWindow and used some convenience routines to build some adequi

prototypes.

The MainWindow can be difficult to understand because of its capabilities as a ScrolledWindow and because
supports the management of so many other objects. The work area of a MainWindow usually contains a mana
widget that contains other widgets. Although the MainWindow can handle the layout of its different areas, we do n
necessarily encourage you to use all its of its features. For larger, production-style applications, you would proba
be better off using the MainWindow for the sake of the MenuBar, while placing the rest of the layout in the hands o
more general-purpose manager widget. These are described in Chapter 8, Manager Widgets.

105

5 The Main Window 5.6 Exercises

You could also decide not to use the MainWindow widget at all. If done properly, you could probably use one of tt
manager widget classes described in Chapter 8 and still be Motif-compliant. Depending on your application, y
might find this technique easier to deal with than the MainWindow widget.

5.6 Exercises

Based on the material in this chapter, you should be able to do the following exercises:

» Modify dynapix.c to have a new PulldownMenu that controls the background color of the pixmap.

» Modify dynapix.c so that it has a command area. The callback for the Command widget should understand
either filenames or color names. If you feel adventurous, try to have it understand both the command file
and the command color. Each command would take a second argument indicating the file or color to use.

106

6 Introduction to Dialogs

This chapter describes the fundamental concepts that underly all Motif dialogs. It provides a foundation for the mc
advanced material in the following chapters. In the course of the introduction, the chapter also provides informati
about Motif's predefined MessageDialog classes.

In Chapter 4, The Main Window, we discussed the top—level windows that are managed by the window manager &
that provide the overall framework for an application. Most applications are too complex to do everything in one ma
top-level window. Situations arise that call for secondary windows, or transient windows, that serve specif
purposes. These windows are commonly referred to as dialog boxes, or more simply as dialogs.

Dialog boxes play an integral role in a GUI-based interface such as Motif. The examples in this book use dialogs
many ways, so just about every chapter can be used to learn more about dialogs. We've already explored some c
basic concepts in Chapter 2, The Motif Programming Model, and Chapter 3, Overview of the Motif Toolkit.
However, the use of dialogs in Motif is quite complex, so we need more detail to proceed further.

The Motif Style Guide makes a set of generic recommendations about how all dialogs should look. The Style GL
also specifies precisely how certain dialogs should look, how they should respond to user events, and under w
circumstances the dialogs should be used. We refer to these dialogs as predefined Motif dialogs, since the M
toolkit implements each of them for you. These dialogs are completely self-sufficient, opague objects that requ
very little interaction from your application. In most situations, you can create the necessary dialog using a sing
convenience routine and you're done. If you need more functionality than what is provided by a predefined Mo
dialog, you may have to create your own customized dialog. In this case, building and handling the dialog require
completely different approach.

There are three chapters on basic dialog usage in this book—-two on the predefined Motif dialogs and one
customized dialogs. There is also an additional chapter later in the book that deals with more advanced dialog tor
This first chapter discusses the most common class of Motif dialogs, called MessageDialogs. These are the simg
kinds of dialogs; they typically display a short message and use a small set of standard responses, such as OK, Ye
No. These dialogs are transient, in that they are intended to be used immediately and then dismissed. MessageDi:
define resources and attributes that are shared by most of the other dialogs in the Motif toolkit, so they provid
foundation for us to build upon in the later dialog chapters. Although Motif dialogs are meant to be opaque objec
we will examine their implementation and behavior in order to understand how they really work. This information ca
help you understand not only what is happening in your application, but also how to create customized dialogs.

Chapter 6, Selection Dialogs, describes another set of predefined Motif dialogs, called SelectionDialogs. Since the
dialogs are the next step in the evolution of dialogs, most of the material in this chapter is applicable there as w
SelectionDialogs typically provide the user with a list of choices. These dialogs can remain displayed on the screer
that they can be used repeatedly. Chapter 7, Custom Dialogs, addresses the issues of creating customized dialogs
Chapter 21, Advanced Dialog Programming, discusses some advanced topics in X and Motif programming usir
dialogs as a backdrop.

6.1 The Purpose of Dialogs

For most applications, it is impossible to develop an interface that provides the full functionality of the application in
single main window. As a result, the interface is typically broken up into discrete functional modules, where tt
interface for each module is provided in a separate dialog box.

107

6 Introduction to Dialogs 6 Introduction to Dialogs

As an example, consider an electronic mail application. The broad range of different functions includes searching
messages according to patterns, composing messages, editing an address book, reporting error messages, and
Dialog boxes are used to display simple messages, as shown in the figure. They are also used to prompt the us

answer simple questions, as shown in the figure. A dialog box can also present a more complicated interaction
shown in the figure.

= Messange

Thiz iz 2 message.

ox|

A message dialog

= Choice

§ ~{Mailrwol6 has been modified — update?

Ves No I Clancel I

A question dialog

108

6 Introduction to Dialogs 6 Introduction to Dialogs

YL |

Folder: wvolb @
—

Lhiyectoryr: bMail | J FelezreCnde) Hidder. Tlee
vering [Fi1%] Cr4705 - .Eimy 12802 |
acxl [Zilz] erelits Z:Eia 5107
Ll [Zils] 10723762 Z0:1= 31864
Loziiuany |-alz] 1028k 4:1L.a 192

vil |zals]| JILZL

2.CC=o

w1 annon-

wclibugo [Zilz] 6723702 8:11zn 12720
vl s [Zila] Q8482 2:8l_a 21668
wil_126B |-2Ll=]| 132 —U:dtza 3U86
ooakecs |zals]| 11720k H.olten 112UGL
ETEEVIVAA [Fi1=] 17 nees A== &2 Ny
Faldur: | vt

4 Raalfficds o Aol Qo

Doy Upmiry Huarch Heulp l

A custom dialog box

In the figure, many different widget classes are used to provide an interface that allows the user to save e-n
messages in different folders. The purpose of a dialog is to focus on one particular task in an application. Since
scope of these tasks is usually quite limited, an application usually provides them in dialog boxes, rather than in
main window.

There is actually no such thing as a dialog widget class in the Motif toolkit. A dialog is actually made up of
DialogShell widget and a manager widget child that implements the visible part of the dialog. The DialogShe
interacts with the window manager to provide the transient window behavior required of dialogs. When we refer tc
dialog widget, we are really talking about the manager widget and all of its children collectively.

When you write a custom dialog, you simply create and manage the children of the DialogShell in the same way t
you create and manage the children of a top—level application shell. The predefined Motif dialogs follow the san
approach, except that the toolkit creates the manager widget and all of its children internally. Most of the stand:
Motif dialogs are composed of a DialogShell and either a MessageBox or SelectionBox widget. Each of these widk
classes creates and manages a humber of internal widgets without application intervention. See Chapter 3, Overv
of the Motif Toolkit, to review the various types of predefined Motif dialogs.

All of the predefined Motif dialogs are subclassed from the BulletinBoard widget class. As such, a BulletinBoard ce
be thought of as the generic dialog widget class, although it can certainly be used as generic manager widget
Chapter 8, Manager Widgets). Indeed, a dialog widget is a manager widget, but it is usually not treated as such by
application. The BulletinBoard widget provides the keyboard traversal mechanisms that support gadgets, as well
number of dialog—specific resources.

It is important to note that for the predefined Motif dialogs, each dialog is implemented as a single widget class, ev
though there are smaller, primitive widgets under the hood. When you create a MessageBox widget, you automatic
get a set of Labels and PushButtons that are laid out as described in the Motif Style Guide. What is not cree
automatically is the DialogShell widget that manages the MessageBox widget. You can either create the shell your

109

6 Introduction to Dialogs 6.2 The Anatomy of a Dialog

and place the MessageBox in it or use a Motif convenience routine that creates both the shell and its dialog wid
child.

The Motif toolkit uses the DialogShell widget class as the parent for all of the predefined Motif dialogs. In thi
context, a MessageBox widget combined with a DialogShell widget creates what the Motif toolkit calls «
MessageDialog. A careful look at terminology can help you to distinguish between actual widget class and Mo
compound objects. The name of the actual widget class ends in Box, while the name of the compound object made
of the widget and a DialogShell ends in Dialog. For example, the convenience routine XmCreateMessageBox()
creates a MessageBox widget, which you need to place inside of a DialogShell yourself. Alternatively
XmCreateMessageDialog() creates a MessageDialog composed of a MessageBox and a DialogShell.

Another point about terminology involves the commonly—used term dialog box. When we say dialog box, we al
referring to a compound object composed of a DialogShell and a dialog widget, not the dialog widget alone. Tt
terminology can be confusing, since the Motif toolkit also provides widget classes that end in box.

One subtlety in the use of MessageBox and SelectionBox widgets is that certain types of behavior depend on whe
or not the widget is a direct child of a DialogShell. For example, the Motif Style Guide says that clicking on the O
button in the action area of a MessageDialog invokes the action of the dialog and then dismisses the dial
Furthermore, pressing the RETURN key anywhere in the dialog is equivalent to clicking on the OK button. Howeve
none of this takes place when the MessageBox widget is not a direct child of a DialogShell.

Perhaps the most important thing to remember is how the Motif toolkit treats dialogs. Once a dialog widget is plac
in a DialogShell, the toolkit tends to treat the entire combination as a single entity. In fact, as we move on, you'll fir
that the toolkit's use of convenience routines, callback functions, and popup widget techniques all hide the fact that
dialog is composed of these discrete elements. While the Motif dialogs are really composed of many primiti
widgets, such as PushButtons and TextFields, the single—entity approach implies that you never access the subwic
directly. If you want to change the label for a button, you set a resource specific to the dialog class, rather than get
a handle to the button widget and changing its resource. Similarly, you always install callbacks on the dialog widc
itself, instead of installing them directly on buttons in the control or action areas.

This approach may be confusing for those already familiar with Xt programming, but not yet familiar with the Moti
toolkit. Similarly, those who learn Xt programming through experiences with the Motif toolkit might get a
misconception of what Xt programming is all about. We try to point out the inconsistencies between the tw
approaches so that you will understand the boundaries between the Motif toolkit and its Xt foundations.

6.2 The Anatomy of a Dialog

As described in Chapter 3, Overview of the Motif Toolkit, dialogs are typically broken down into two regions knowr
as the control and action areas. The control area is also referred to as the work area. The control area contain
widgets that provide the functionality of the dialog, such as Labels, ToggleButtons, and List widgets. The action ar
contains PushButtons whose callback routines actually perform the action of the dialog box. While most dialo
follow this pattern, it is important to realize that these two regions represent user—interface concepts and do
necessarily reflect how Motif dialogs are implemented.

the figure shows these areas in a sample dialog box.

110

6 Introduction to Dialogs 6.3 Creating Motif Dialogs

= Frnter a | i}
Active Falder: fusrspoal/mailival A
1 total, 0 new,) unread, 0 deleted 9@
Messages: | 1 :
Print Message: Printers
e |
w Standard IMessage Headers \ controlarea
4 &1 Message Headlers
£
MMessage Sody Or.l
v 2 i L = =~
Printer Name: I 1o
L Done I Print I Help | | > action araa
) 1

A sample dialog box

The Motif Style Guide describes in a general fashion how the control and action areas for all dialogs should be |
out. For predefined Motif dialogs, the control area is rigidly specified. For customized dialogs, there is only a genel
set of guidelines to follow. The guidelines for the action area specify a number of common actions that can be use
both predefined Motif dialogs and customized dialogs. These actions have standard meanings that help ens
consistency between different Motif applications.

By default, the predefined Motif MessageDialogs provide three action buttons, which are normally labeled OK
Cancel, and Help, respectively. SelectionDialogs provide a fourth button, normally labeled Apply, which is placec
between the OK and Cancel buttons. This button is created but not managed, so it is not visible unless the applica
explicitly manages it. The Style Guide specifies that the OK button applies the action of the dialog and dismisses
while the Apply button applies the action but does not dismiss the dialog. The Cancel button dismisses the dial
without performing any action and the Help button provides any help that is available for the dialog. When you a
creating custom dialogs, or even when you are using the predefined Motif dialogs, you may need to provide actic
other than the default ones. If so, you should change the labels on the buttons so that the actions are obvious.
should try to use the common actions defined by the Motif Style Guide if they are appropriate, since these actions t
standard meanings. We will address this issue further as it comes up in discussion; it is not usually a problem until
create your own customized dialogs, as described in Chapter 7, Custom Dialogs.

6.3 Creating Motif Dialogs

Under most circumstances, creating a predefined Motif dialog box is very simple. All Motif dialog types have
corresponding convenience routines that simplify the task of creating and managing them. For example, a stanc
MessageDialog can be created as shown in the following code fragment:

#include <Xm/MessageB.h>
extern Widget parent;

Widget dialog;
Arg arg[5];

111

6 Introduction to Dialogs 6.3.1 Dialog Header Files

XmString t;
intn=0;

t = XmStringCreatelLocalized ("Hello World");

XtSetArg (arg[n], XmNmessageString, t); n++;

dialog = XmCreateMessageDialog (parent, "message", arg, n);
XmStringFree (t);

The convenience routine does almost everything automatically. The only thing that we have to do is specify the
message that we want to display.

6.3.1 Dialog Header Files

As we mentioned earlier, there are two basic types of predefined Motif dialog boxes: MessageDialogs al
SelectionDialogs. MessageDialogs present a simple message, to which a yes (OK) or no (Cancel) response usu
suffices. There are six types of MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog, TemplateDialog
WarningDialog, and WorkingDialog. These types are not actually separate widget classes, but rather instances of
generic MessageDialog that are configured to display different graphic symbols. All of the MessageDialogs a
compound objects that are composed of a MessageBox widget and a DialogShell. When using MessageDialogs,
must include the file <Xm/MessageB.h>.

SelectionDialogs allow for more complicated interactions. The user can select an item from a list or type an entry ir
a TextField widget before acting on the dialog. There are essentially four types of SelectionDialogs, although t
situation is a bit more complex than for MessageDialogs. The PromptDialog is a specially configure:
SelectionDialog; both of these dialogs are compound objects that are composed of a SelectionBox widget an
DialogShell. The Command widget and the FileSelectionDialog are based on separate widget classes. However,
are both subclassed from the SelectionBox and share many of its features. When we use the general term "sele:
dialogs," we are referring to these three widget classes plus their associated dialog shells. To use a SelectionDic
you must include the file <Xm/SelectioB.h>. Yes, you read that right. It does, in fact, read SelectioB.h. The reason
the missing n is there is a fourteen—character filename limit on UNIX System V machines. For FileSelectionDialog
the appropriate include file is <Xm/FileSB.h>, and for the Command widget it is <Xm/Command.h>.

6.3.2 Creating a Dialog

You can use any of the following convenience routines to create a dialog box. They are listed according to the hee
file in which they are declared:

<Xm/MessageB.h>:

XmCreateMessageBox()
XmCreateMessageDialog()
XmCreateErrorDialog()
XmCreatelnformationDialog()
XmCreateQuestionDialog()
XmCreateTemplateDialog()
XmCreateWarningDialog()
XmCreateWorkingDialog()

<Xm/SelectioB.h>:

XmCreateSelectionBox()
XmCreateSelectionDialog()
XmCreatePromptDialog()

112

6 Introduction to Dialogs 6.3.3 Setting Resources

<Xm/FileSB.h>:

XmCreateFileSelectionBox()
XmCreateFileSelectionDialog()

<Xm/Command.h>:
XmCreateCommand()

Each of these routines creates a dialog widget. In addition, the routines that end in Dialog automatically create a
DialogShell as the parent of the dialog widget. All of the convenience functions for creating dialogs use the standart
Motif creation routine format. For example, XmCreateMessageDialog() takes the following form:

Widget
XmCreateMessageDialog(parent, name, arglist, argcount)
Widget parent;
String *name;
ArgList arglist;
Cardinal argcount;

In this case, we are creating a common MessageDialog, which is a MessageBox with a DialogShell parent. The
parent parameter specifies the widget that acts as the owner or parent of the DialogShell. Note that the parent mus
not be a gadget, since the parent must have a window associated with it. The dialog widget itself is a child of the
DialogShell. You are returned a handle to the newly created dialog widget, not the DialogShell parent. For the
routines that just create a dialog widget, the parent parameter is simply a manager widget that contains the dialog.

The arglist and argcount parameters for the convenience routines specify resources using the old-style
ArgList format, just like the rest of the Motif convenience routines. A varargs—style interface is not available for
creating dialogs. However, you can use the varargs—style interface for setting resources on a dialog after is has |
created by using XtVaSetValues().

6.3.3 Setting Resources

There are a number of resources and callback functions that apply to almost all of the Motif dialogs. These resout
deal with the action area buttons in the dialogs. Other resources only apply to specific types of dialogs; they deal v
the different control area components such as Labels, TextFields, and List widgets. The different resources are Ii
below, grouped according to the type of dialogs that they affect:

General dialog resources:

XmNokLabelString XmNokCallback
XmNcancelLabelString XmNcancelCallback
XmNhelpLabelString XmNhelpCallback

MessageDialog resources:
XmNmessageString XmNsymbolPixmap
SelectionDialog resources:

XmNapplyLabelString XmNapplyCallback
XmNselectionLabelString XmNlistLabelString

113

6 Introduction to Dialogs 6.3.4 Dialog Management

FileSelectionDialog resources:

XmNfilterLabelString ~ XmNdirListLabelString
XmNfileListLabelString

Command resources:
XmNpromptString

The labels and callbacks of the various buttons in the action area are specified by resources based on the standarc
Motif dialog button names. For example, the XmNokLabelString resource is used to set the label for the OK

button. XmNokCallback is used to specify the callback routine that the dialog should call when that button is
activated. As discussed earlier, it may be appropriate to change the labels of these buttons, but the resource and
callback names will always have names that correspond to their default labels.

The XmNmessageString resource specifies the message that is displayed by the MessageDialog. The
XmNsymbolPixmap resource specifies the iconic symbol that is associated with each of the MessageDialog type:
This resource is rarely changed, so discussion of it is deferred until Chapter 21, Advanced Dialog Programming.

The other resources apply to the different types of selection dialogs. For example, -XmNselectionLabelString
sets the label that is placed above the list area in SelectionDialog. These resources are discussed in Chapte
Selection Dialogs.

All of these resources apply to the Labels and PushButtons in the different dialogs. It is important to note that they
different from the usual resources for Labels and PushButtons. For example, the Label resource XmNlabelString
would normally be used to specify the label for both Label and PushButton widgets. Dialogs use their own resoure
to maintain the abstraction of the dialog widget as a discrete user—interface object.

Another important thing to remember about the resources that refer to widget labels is that their values must
specified as compound strings. Compound strings allow labels to be rendered in arbitrary fonts and to span multi
lines. See Chapter 19, Compound Strings, for more information.

The following code fragment demonstrates how to specify dialog resources and callback routines:

Widget dialog;
XmString msg, yes, no;
extern void my_callback();

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreatelLocalized ("Yes");

no = XmStringCreatelLocalized ("No");

msg = XmStringCreatelLocalized ("Do you want to quit?");

XtVaSetValues (dialog, XmNmessageString, msg, XmNokLabelString, yes, XmNcancelLabelString, no, NULL)
XtAddCallback (dialog, XmNokCallback, my_callback, NULL); XtAddCallback (dialog, XmNcancelCallback,
my_callback, NULL); XmStringFree (yes); XmStringFree (no); XmStringFree (msg);

6.3.4 Dialog Management

None of the Matif toolkit convenience functions manage the widgets that they create, so the application must c
XtManageChild() explicitly. It just so happens that managing a dialog widget that is the immediate child of a
DialogShell causes the entire dialog to pop up. Similarly, unmanaging the same dialog widget causes it and

114

6 Introduction to Dialogs 6.3.4 Dialog Management

DialogShell parent to pop down. This behavior is consistent with the Motif toolkit's treatment of the dialog/shel
combination as a single object abstraction. The toolkit is treating its own dialog widgets as opaque objects and try
to hide the fact that there are DialogShells associated with them. The toolkit is also making the assumption that w
the programmer manages a dialog, she wants it to pop up immediately.

This practice is somewhat presumptuous and it conflicts directly with the specifications for the X Toolkit Intrinsics
These specifications say that when the programmer wants to display a popup shell on the screen, she shoulc
XtPopup(). Similarly, when the dialog is to be dismissed, the programmer should call XtPopdown(). The fact
that XtManageChild() happens to pop up the shell and XtUnmanageChild() causes it to pop down is
misleading to the new Motif programmer and confusing to the experienced Xt programmer.

You should understand that this discussion of managing dialogs does not apply to customized dialogs that you cr
yourself. It only applies to the predefined Motif dialog widgets that are created as immediate children of DialogShel
The Motif toolkit uses this method because it has been around for a long time and it must be supported for backwze
compatibility with older versions. Furthermore, using XtPopup() requires access to the DialogShell parent of a
dialog widget, which breaks the single—object abstraction.

There are two ways to manage Motif dialogs. You can follow the Motif toolkit conventions of using
XtManageChild() and XtUnmanageChild() to pop up and pop down dialog widgets or you can use
XtPopup() and XtPopdown() on the dialog's parent to do the same job. Whatever you do, it is good practice to
pick one method and be consistent throughout an application. It is possible to mix and match the methods, but tt
may be some undesirable side effects, which we will address in the next few sections.

In an effort to make our applications easier to port to other Xt—based toolkits, we follow the established convention
using XtPopup(). This technique can coexist easily with XtManageChild(), since popping up an already
popped-up shell has no effect. XtPopup() takes the following form:

void

XtPopup(shell, grab_kind)
Widget shell;
XtGrabKind grab_kind;

The shell parameter to the function must be a shell widget; in this case it happens to be a DialogShell. If you
created the dialog using one of the Motif convenience routines, you can get a handle to the DialogShell by calling
XtParent() on the dialog widget.

The grab_kind parameter can be one of XtGrabNone, XtGrabNonexclusive, or XtGrabExclusive. We

almost always use XtGrabNone, since the other values imply a server grab, which means that other windows on th
desktop are locked out. Grabbing the server results in what is called modality; it implies that the user cannot inter
with anything but the dialog. While a grab may be desirable in some cases, the Motif toolkit provides some predefin
resources that handle the grab for you automatically. The advantage of using this alternate method is that it allows
client to communicate more closely with the Motif Window Manager (mwm) and it provides for different kinds of
modality. These methods are discussed in Section #smodaldlg. For detailed information on XtPopup() and the
different uses of grab_kind, see Volume Four, X Toolkit Intrinsics Programming Manual.

If you call XtPopup() on a dialog widget that has already been popped up using XtManageChild(), the routine
has no effect. As a result, if you attempt to specify grab_kind as something other than XtGrabNone, it also has
no effect.

The counterpart to XtPopup() is XtPopdown(). Any time you want to pop down a shell, you can use this
function, which has the following form:

115

6 Introduction to Dialogs 6.3.4 Dialog Management

void
XtPopdown(shell)
Widget shell;

Again, the shell parameter should be the XtParent() of the dialog widget. If you use XtUnmanageChild()

to pop down a dialog, it is not necessary to call XtPopdown(), although we advise it for correctness and good form.
However, it is important to note that if you use XtUnmanageChild() to pop down a dialog, you must use
XtManageChild() to redisplay it again. Don't forget that the dialog widget itself is not a shell, so managing or
unmanaging it still takes place when you use the manage and unmanage functions.

Let's take a closer look at how dialogs are really used in an application. Examining the overall design and t
mechanics that are involved will help to clarify a number of issues about managing and unmanaging dialogs &
DialogShells. The program listed in the source code displays an InformationDialog when the user presse:
PushButton in the application's main window. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4. XmStringCreatelLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

/* hello_dialog.c —— your typical Hello World program using
* an InformationDialog.

*

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

main(argc, argv)
int argc;
char *argv[];

XtAppContext app;

Widget toplevel, rc, pb;

extern void popup(); /* callback for the pushbuttons —— pops up dialog */
extern void exit();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos", NULL, O,
&argc, argv, NULL, NULL);

rc = XtVaCreateWidget ("rowcol",
xmRowColumnWidgetClass, toplevel, NULL);

pb = XtVaCreateManagedWidget ("Hello",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (pb, XmNactivateCallback, popup, "Hello World");

pb = XtVaCreateManagedWidget ("Goodbye",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (pb, XmNactivateCallback, exit, NULL);

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for the PushButtons. Popup an InformationDialog displaying
* the text passed as the client data parameter.
*
/
void
popup(button, client_data, call_data)
Widget button;

116

6 Introduction to Dialogs 6.3.4 Dialog Management

XtPointer client_data;
XtPointer call_data;
{
Widget dialog;
XmString xm_string;
extern void activate();
Arg argsl[5];
intn=0;
char *text = (char *) client_data;

[* set the label for the dialog */
xm_string = XmStringCreatelLocalized (text);
XtSetArg (args[n], XmNmessageString, xm_string); n++;

[* Create the InformationDialog as child of button */
dialog = XmCreatelnformationDialog (button, "info", args, n);

/* no longer need the compound string, free it */
XmStringFree (xm_string);

[* add the callback routine */
XtAddCallback (dialog, XmNokCallback, activate, NULL);

[* manage the dialog */

XtManageChild (dialog);

XtPopup (XtParent (dialog), XtGrabNone);
}

/* callback routine for when the user presses the OK button.
* Yes, despite the fact that the OK button was pressed, the
* widget passed to this callback routine is the dialog!

*/

void

activate(dialog, client_data, call_data)

Widget dialog;

XtPointer client_data;

XtPointer call_data;

{

puts ("OK was pressed.");

}

The output of this program is shown in the figure.

—
—hello | J|J||

Hello | |

1 Goodbye

—_——

| Info_popup

§ Hello World

OK | Cancel | Help

i i)

117

6 Introduction to Dialogs 6.3.5 Closing Dialogs

Output of hello_dialog.c

Dialogs are often invoked from callback routines attached to PushButtons or other interactive widgets. Once t
dialog is created and popped up, control of the program is returned to the main event—handling loc
(XtAppMainLoop()), where normal event processing resumes. At this point, if the user interacts with the dialog by
selecting a control or activating one of the action buttons, a callback routine for the dialog is invoked. In the sour
code we happen to use an InformationDialog, but the type of dialog used is irrelevant to the model.

When the PushButton in the main window is pressed, popup() is called. A text string that is used as the message
display in the InformationDialog is passed as client data. The dialog uses a single callback routine, activate(), for
the XmNokCallback resource. This function is invoked when the user presses the OK button. The callback simply
prints a message to standard output that the button has been pressed. Similar callback routines could be installe
the Cancel and Help buttons through the XmNcancelCallback and -XmNhelpCallback resources.

6.3.5 Closing Dialogs

You might notice that activating either the OK or the Cancel button in the previous example causes the dialog to
automatically popped down. The Motif Style Guide says that when any button in the action area of a predefined M
dialog is pressed, except for the Help button, the dialog should be dismissed. The Motif toolkit takes this specificati
at face value and enforces the behavior, which is consistent with the idea that Motif dialogs are self-containe
self-sufficient objects. They manage everything about themselves from their displays to their interactions with t
user. And when it's time to go away, they unmanage themselves. Your application does not have to do anything
cause any of the behavior to occur.

Unfortunately, this behavior does not take into account error conditions or other exceptional events that may r
necessarily justify the dialog's dismissal. For example, if pressing OK causes a file to be updated, but the operat
fails, you may not want the dialog to be dismissed. If the dialog is still displayed, the user can try again without havi
to repeat the actions that led to popping up the dialog.

The XmNautoUnmanage resource provides a way around the situation. This resource controls whether the dialc
box is automatically unmanaged when the user selects an action area button other than the Help button
XmNautoUnmanage is True, after the callback routine for the button is invoked, the DialogShell is popped down
and the dialog widget is unmanaged automatically. However, if the resource is set to False, the dialog is no
automatically unmanaged. The value of this resource defaults to True for MessageDialogs and SelectionDialogs;
defaults to False for FileSelectionDialogs.

Since it is not always appropriate for a dialog box to unmanage itself automatically, it turns out to be easier to
XmNautoUnmanage to False in most circumstances. This technique makes dialog management easier, since i
keeps the toolkit from indiscriminately dismissing a dialog simply because an action button has been activated. Wt
it is true that we could program around this situation by calling XtPopup() or XtManageChild() from a
callback routine in error conditions, this type of activity is confusing because of the double—-negative action it implie
In other words, programming around the situation is just undoing something that should not have been done in
first place.

This discussion brings up some issues about when a dialog should be unmanaged and when it should be destroy
you expect the user to have an abundant supply of computer memory, you may reuse a dialog by retaining a hand
the dialog, as shown in Example 5-4 later in this chapter. There are also performance considerations that may a
whether you choose to destroy or reuse dialogs. It takes less time to reuse a dialog than it does to create a new
provided that your application is not so large that it is consuming all of the system's resources. If you do not retai

118

6 Introduction to Dialogs 6.3.6 Generalizing Dialog Creation

handle to a dialog, and if you need to conserve memory and other resources, you should destroy the dialog when
you pop it down.

Another method the user might use to close a dialog is to select the Close item from the window menu. This menu
be pulled down from the title bar of a window. Since the menu belongs to the window manager, rather than the st
widget or the application, you cannot install any callback routines for its menu items. However, you can use tl
XmNdeleteResponse resource to control how the DialogShell responds to a Close action. The Motif VendorShell,
from which the DialogShell is subclassed, is responsible for trapping the notification and determining what to do ne
based on the value of the resource. It can have one of the following values:

XmUNMAP

This value causes the dialog to be unmapped. The dialog disappears from the screen, but it is not destroyec
nor is it iconified. The dialog widget and its windows are still intact and can be redisplayed using
XtPopup(). This value is the default for DialogShells.

XmDESTROY

This value destroys the DialogShell and calls its XmNdestroyCallback. Note that all of the shell's
children are also destroyed, including the dialog widget and its subwidgets. When the dialog is destroyed, y«
cannot redisplay the dialog or reference its handle again. If you need the dialog again, you have to create
another one. Examples of using the XmNdestroyCallback are presented in Chapter 21, Advanced Dialog
Programming.

XmDO_NOTHING

This value causes the toolkit to take no action. The value should only be specified in circumstances where y
want to handle the event on your own. However, handling the event involves much more than installing a
simple callback routine. It requires building a lower—level mechanism that interprets the proper events when
they are sent by the window manager. The most common thing to do in such cases is to activate the default
action of the dialog or to interpose a prompting mechanism to verify the user's action. This topic is discusse
in Chapter 16, Interacting With the Window Manager.

It may be convenient for your application to know when a dialog has been popped up or down. If so, you ¢
install callbacks that are invoked whenever either of these events take place. The actions of popping up ¢
down dialogs can be monitored through the -XmNpopupCallback and XmNpopdownCallback callback
routines. For example, when the function associated with a XmNpopupCallback is invoked, you could
position the dialog automatically, rather than allowing the window manager to control the placement. Se
Chapter 7, Custom Dialogs, for more information on these callbacks.

6.3.6 Generalizing Dialog Creation

Posting dialogs that display informative messages is something just about every application is going to do frequen
Rather than write a separate routine for each case where a message needs to be displayed, we can generali;
process by writing a single routine that handles most, if not all, cases. the source code shows the PostDialog()
routine. This routine creates a MessageDialog of a given type and displays an arbitrary message. Rather than us
convenience functions provided by Motif for each of the MessageDialog types, the routine uses the generic funct
XmCreateMessageDialog() and configures the symbol to be displayed by setting the XmNdialogType
resource. XmStringCreatelLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1.

/*

* PostDialog() —— a generalized routine that allows the programmer
* to specify a dialog type (message, information, error, help, etc..),

119

6 Introduction to Dialogs 6.4 Dialog Resources

* and the message to display.

*/

Widget

PostDialog(parent, dialog_type, msg)
Widget parent;

int dialog_type;

char *msg;

{
Widget dialog;
XmString text;

dialog = XmCreateMessageDialog (parent, "dialog”, NULL, 0);
text = XmStringCreatelLocalized (msg);
XtVaSetValues (dialog,
XmNdialogType, dialog_type,
XmNmessagesString, text,
NULL);
XmStringFree (text);

XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

return dialog;

}

This routine allows the programmer to specify several parameters: the parent widget, the type of dialog that is to be
used, and the message that is to be displayed. The function returns the new dialog widget, so that the calling routin
can modify it, unmanage it, or keep a handle to it. You may have additional requirements that this simplified examp
does not satisfy. For instance, the routine does not allow you to specify callback functions for the buttons in the acti
area and it does not handle the destruction of the widget when it is no longer needed. You could extend the routine
handle these issues, or you could control them outside the context of the function. You may also want to extend the
routine so that it reuses the same dialog each time it is called and so that it allows you to disable the different actior
area buttons. All of these issues are discussed again in Chapter 6, Selection Dialogs, and in Chapter 21, Advanced
Dialog Programming.

6.4 Dialog Resources

The following sections discuss resources that are specific to Motif dialogs. In most cases, these resources
BulletinBoard widget resources, since all Motif dialogs are subclassed from this class. However, they are not intenc
to be used by generic BulletinBoard widgets. The resources only apply when the widget is an immediate child o
DialogShell widget; they are really intended to be used exclusively by the predefined Motif dialog classes. Rememt
that the resources must be set on the dialog widget, not the DialogShell. See Chapter 8, Manager Widgets, for det
on the generic BulletinBoard resources.

6.4.1 The Default Button

All predefined Motif dialogs have a default button in their action area. The default button is activated when the us
presses the RETURN key in the dialog. The OK button is normally the default button, but once the dialog |
displayed, the user can change the default button by using the arrow keys to traverse the action buttons. The ac
button with the keyboard focus is always the default button. Since the default button can be changed by the user,
button that is the default is only important when the dialog is initially popped up. The importance of the default buttc
lies in its ability to influence the user's default response to the dialog.

120

6 Introduction to Dialogs 6.4 Dialog Resources

You can change the default button for a MessageDialog by setting the XmNdefaultButtonType resource on the
dialog widget. This resource is specific to MessageDialogs; it cannot be set for the various types of selection dialo
The resource can have one of the following values:

XmDIALOG_OK_BUTTON

This value specifies that the default button is the furthest button on the left of the dialog. By default, this
button is the OK button, although its label may have been changed to another string.
XmDIALOG_CANCEL_BUTTON

This value specifies that the Cancel button is the default button. This value is appropriate in situations where
the action of the dialog is destructive, such as for a WarningDialog that is posted in order to warn the user o
possibly dangerous action.

XmDIALOG_HELP_BUTTON

This value specifies the Help button, which is always the furthest button on the right of a Motif dialog. This
button is rarely set as the default button.
XmDIALOG_NONE

This value specifies that there is no default button.

The values for XmNdefaultButtonType come up again later, when we discuss
XmMessageBoxGetChild() and again in Chapter 6, Selection Dialogs, for
XmSelectionBoxGetChild(). An example of how the default button type can be used is shown in the
source code XmStringCreatelLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

/*
* WarningMsg() —— Inform the user that she is about to embark on a
* dangerous mission and give her the opportunity to back out.
*/
void
WarningMsg(parent, client_data, call_data)
Widget parent;
XtPointer client_data;
XtPointer call_data;
{
static Widget dialog;
XmString text, ok_str, cancel_str;
char *msg = (char *) client_data;

if (!dialog)
dialog = XmCreateWarningDialog (parent, "warning", NULL, 0);
text = XmStringCreateLtoR (msg, XmFONTLIST_DEFAULT_TAG);
ok_str = XmStringCreateLocalized ("Yes");
cancel_str = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,
XmNmessageString, text,
XmNokLabelString, ok_str,
XmNcancelLabelString, cancel_str,
XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
NULL);
XmStringFree (text);
XmStringFree (ok_str);
XmStringFree (cancel_str);

XtManageChild (dialog);

121

6 Introduction to Dialogs 6.4.2 Initial Keyboard Focus

XtPopup (XtParent (dialog), XtGrabNone);
}

The intent of this function is to create a dialog that tries to discourage the user from performing a destructive
action. By using a WarningDialog and by making the Cancel button the default choice, we have given the
user adequate warning that the action may have dangerous consequences. The output of a program runnin
this code fragment is shown in the figure.

wsaming_popup

]
g Do yon really want ta delete all files?

Yes No | Help

Output of WarningMsg()

You can also set the default button for a dialog by the setting the BulletinBoard resource
-XmNdefaultButton. This technique works for both MessageDialogs and SelectionDialogs. The resource
value must be a widget ID, which means that you have to get a handle to a subwidget in the dialog to set
resource. You can get the handle to subwidgets using XmMessageBoxGetChild() or
XmSelectionBoxGetChild(). Since this method breaks the Motif dialog abstraction, we describe it

later in Section #sinternwid.

6.4.2 Initial Keyboard Focus

When a dialog widget is popped up, one of the internal widgets in the dialog has the keyboard focus. This widge
typically the default button for the dialog, which makes sense in most cases. However, there are situations where
appropriate for another widget to have the initial keyboard focus. For example, when a PromptDialog is popped ug
makes sense for the TextField to have the keyboard focus so that the user can immediately start typing a response

In Motif 1.1, it is not easy to set the initial keyboard focus in a dialog widget to anything other than a button in th
action area. Motif 1.2 has introduced the XmNinitialFocus resource to deal with this situation. Since this resource

is a Manager widget resource, it can be used for both MessageDialogs and SelectionDialogs, although it is norm
only used for SelectionDialogs. The resource specifies the subwidget that has the keyboard focus the first time that
dialog is popped up. If the dialog is popped down and popped up again later, it remembers the widget that had
keyboard focus when it was popped down and that widget is given the keyboard focus again. The resource value r
again be a widget ID. The default value of XmNinitialFocus for MessageDialogs is the subwidget that is also the
XmNdefaultButton for the dialog. For SelectionDialogs, the text entry area is the default value for the resource.

6.4.3 Button Sizes

The XmNminimizeButtons resource controls how the dialog sets the widths of the action area buttons. If the
resource is set to True, the width of each button is set so that it is as small as possible while still enclosing the ent

122

6 Introduction to Dialogs 6.4.4 The Dialog Title

label, which means that each button will have a different width. The default value of False specifies that the width
of each button is set to the width of the widest button, so that all buttons have the same width.

6.4.4 The Dialog Title

When a new shell widget is mapped to the screen, the window manager creates its own window that contains the
bar, resize handles, and other window decorations and makes the window of the DialogShell the child of this n
window. This technique is called reparenting a window; it is only done by the window manager in order to ad
window decorations to a shell window. The window manager reparents instances of all of the shell widget class
except OverrideShell. These shells are used for menus and thus should not have window manager decorations.

Most window managers that reparent shell windows display titles in the title bars of their windows. For predefine
Motif dialogs, the Motif toolkit sets the default title to the name of the dialog widget with the string _popup
appended. Since this string is almost certainly not an appropriate title for the window, you can change the ti
explicitly using the -XmNdialogTitle BulletinBoard resource. (Do not confuse this title with the message
displayed in MessageDialog, which is set by XmNmessageString.) The value for -XmNdialogTitle must be a
compound string. The BulletinBoard in turn sets the -XmNtitle resource of the DialogShell; the value of this
resource is a regular C string.

So, you can set the title for a dialog window in one of two ways. The following code fragment shows how to set tl
title using the -XmNdialogTitle resource:

XmString title_string;

title_string = XmStringCreateLocalized ("Dialog Box");
dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
XtVaSetValues (dialog,
XmNdialogTitle, title_string,
NULL);
XmStringFree (title_string);

This technique requires creating a compound string. If you set the XmNititle resource directly on the DialogShell,
you can use a regular C string, as in the following code fragment:

dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
XtVaSetValues (XtParent (dialog),

XmNtitle, "Dialog Box",

NULL);

While the latter method is easier and does not require creating and freeing a compound string, it does break the
abstraction of treating the dialog as a single entity.

6.4.5 Dialog Resizing

The XmNnoResize resource controls whether or not the window manager allows the dialog to be resized. If th
resource is set to True, the window manager does not display resize handles in the window manager frame for t
dialog. The default value of False specifies that the window manager should provide resize handles. Since sorr
dialogs cannot handle resize events very well, you may find it better aesthetically to prevent the user from resizi
them.

This resource is an attribute of the BulletinBoard widget, even though it only affects the shell widget parent of
dialog widget. The resource is provided as a convenience to the programmer, so that she is not required to get a he

123

6 Introduction to Dialogs 6.4.6 Dialog Fonts

to the DialogShell. The resource only affects the presence of resize handles in the window manager frame; it does
deal with other window manager controls. See Chapter 16, Interacting With the Window Manager, for details on ho
to specify the window manager controls for a DialogShell, or any shell widget, directly.

6.4.6 Dialog Fonts

The BulletinBoard widget provides resources that enable you to specify the fonts that are used for all of the butt
Label, and Text widget descendants of the BulletinBoard. Since Motif dialog widgets are subclassed from tl
BulletinBoard, you can use these resources to make sure that the fonts that are used within a dialog are consistent
XmNbuttonFontList resource specifies the font list that is used for all of the button descendants of the dialog.
The resource is set on the dialog widget itself, not on its individual children. Similarly, the XmNlabelFontList
resource is used to set the font list for all of the Label descendants of the dialog and XmNtextFontList is used for
all of the Text and TextField descendants.

If one of these resources is not set, the toolkit determines the font list by searching up the widget hierarchy for
ancestor that is a subclass of BulletinBoard, VendorShell, or MenuShell. If an ancestor is found, the font list resou
is set to the value of that font list resource in the ancestor widget. See Chapter 19, Compound Strings, for mc
information on font lists.

You can override the XmNbuttonFontList, XmNlabelFontList, and XmNtextFontList resources on a

per—widget basis by setting the XmNfontList resource directly on individual widgets. Of course, you must break
the dialog abstraction and retrieve the widgets internal to the dialog itself to set this resource. While we describe h
to do this in the following section, we do not recommend configuring dialogs down to this level of detail.

6.5 Dialog Callback Routines

As mentioned earlier, the predefined Motif dialogs have their own resources to reference the labels and callbz
routines for the action area PushButtons. Instead of accessing the PushButton widgets in the action area to in
callbacks, you use the resources XmNokCallback, XmNcancelCallback, and XmNhelpCallback on the

dialog widget itself. These callbacks correspond to each of the three buttons, OK, Cancel, and Help.

Installing callbacks for a dialog is no different than installing them for any other type of Motif widget; it may just
seem different because the dialog widgets contain so many subwidgets. The following code fragment demonstrates
installation of simple callback for all of the buttons in a MessageDialog:

dialog = XmCreateMessageDialog (w, "notice", NULL, 0);

XtAddCallback (dialog, XmNokCallback, ok_pushed, "Hi");
XtAddCallback (dialog, XmNcancelCallback, cancel_pushed, "Foo");
XtAddCallback (dialog, XmNhelpCallback, help_pushed, NULL);
XtManageChild (dialog);

/* ok_pushed() ——the OK button was selected. */
void

ok_pushed(widget, client_data, call_data)
Widget widget;

XtPointer client_data;

XtPointer call_data; { char *message = (char *) client_data; printf ("OK was selected: %s0, message); } /
cancel_pushed() ——the Cancel button was selected. */ void cancel_pushed(widget, client_data, call_data) Wid

124

6 Introduction to Dialogs 6.4.6 Dialog Fonts

widget; XtPointer client_data;

XtPointer call_data; { char *message = (char *) client_data; printf ("Cancel was selected: %s0, message); }
help_pushed() —-the Help button was selected. */ void help_pushed(widget, client_data, call_data) Widget widg
XtPointer client_data;

XtPointer call_data; { printf ("Help was selected0); } In this example, a dialog is created and callback routines fc
each of the three responses are added using XtAddCallback(). We also provide simple client data to demonstrate
how the data is passed to the callback routines. These callback routines simply print the fact that they have b
activated; the messages they print are taken from the client data.

All of the dialog callback routines take three parameters, just like any standard callback routine. The widget
parameter is the dialog widget that contains the button that was selected; it is not the DialogShell widget or t
PushButton that the user selected from the action area. The second parameter is the client_data, which is
supplied to XtAddCallback(), and the third is the call_data, which is provided by the internals of the widget

that invoked the callback.

The client_data parameter is of type XtPointer, which means that you can pass arbitrary values to the
function, depending on what is necessary. However, you cannot pass a float or a double value or an actual data
structure. If you need to pass such values, you must pass the address of the variable or a pointer to the data stru
In keeping with the philosophy of abstracting and generalizing code, you should use the client_data parameter as
much as possible because it eliminates the need for some global variables and it keeps the structure of an applic
modular.

For the predefined Motif dialogs, the call_data parameter is a pointer to a data structure that is filled in by the
dialog box when the callback is invoked. The data structure contains a callback reason and the event that invokec
callback. The structure is of type XmAnyCallbackStruct, which is declared as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The value of the reason field is an integer value that can be any one of XmCR_HELP, XmCR_OK, or
XmMCR_CANCEL. The value specifies the button that the user pressed in the dialog box. The values for the reason
field remain the same, no matter how you change the button labels for a dialog. For example, you can change the |
for the OK button to say Help, using the resource XmNokLabelString, but the reason parameter will still be
XmMCR_OK when the button is activated.

Because the reason field provides information about the user's response to the dialog in terms of the button that w:
pushed, we can simplify the previous code fragment and use one callback function for all of the possible actions. -
callback function can determine which button was selected by examining reason. the source code demonstrates tt
simplification. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreatelLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1.

/* reason.c —— examine the reason field of the callback structure
* passed as the call_data of the callback function. This field

* indicates which action area button in the dialog was pressed.
*/

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

125

6 Introduction to Dialogs 6.4.6 Dialog Fonts

/* main() ——create a pushbutton whose callback pops up a dialog box */
main(argc, argv)
char *argv[];
{
XtAppContext app;
Widget toplevel, rc, pb;
extern void pushed();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos", NULL, O,
&argc, argv, NULL, NULL);

rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel, NULL);

pb = XtVaCreateManagedWidget ("Hello",
xmPushButtonWidgetClass, rc, NULL);
XtAddCallback (pb, XmNactivateCallback, pushed, "Hello World");

pb = XtVaCreateManagedWidget ("Goodbye",
xmPushButtonWidgetClass, rc, NULL);
XtAddCallback (pb, XmNactivateCallback, pushed, "Goodbye World");

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() ——the callback routine for the main app's pushbuttons.
* Create and popup a dialog box that has callback functions for
* the OK, Cancel and Help buttons.
*/
void
pushed(widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;
{
static Widget dialog;
char *message = (char *) client_data;
XmString t = XmStringCreatelLocalized (message);

[* See if we've already created this dialog —- if so,
* we don't need to create it again. Just set the message
* and manage it (repop it up).
*/
if (\dialog) {
extern void callback();
Arg args[5];
intn=0;

XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateMessageDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, callback, "Hi");
XtAddCallback (dialog, XmNcancelCallback, callback, "Foo");
XtAddCallback (dialog, XmNhelpCallback, callback, "Bar");

}

XtVaSetValues (dialog, XmNmessageString, t, NULL);

XmStringFree (t);

XtManageChild (dialog);

126

6 Introduction to Dialogs 6.6 Piercing the Dialog Abstraction

XtPopup (XtParent (dialog), XtGrabNone);
}

/* callback() ——One of the dialog buttons was selected.

* Determine which one by examining the "reason" parameter.
*/

void

callback(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{

char *button;
char *message = (char *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs—>reason) {
case XmMCR_OK : button = "OK"; break;
case XmMCR_CANCEL : button = "Cancel"; break;
case XmMCR_HELP : button = "Help";

}

printf ("%s was selected: %s0, button, message);

if (cbs—>reason '= XmCR_HELP) {
/* the ok and cancel buttons "close" the widget */
XtPopdown (XtParent (widget));

}
}

Another interesting change in this application is the way pushed() determines if the dialog has already been
created. By making the dialog widget handle static to the pushed() callback function, we retain a handle to this
object across multiple button presses. For each invocation of the callback, the dialog's message is reset and it is
popped up again.

Considering style guide issues again, it is important to know when it is appropriate to dismiss a dialog. As not
earlier, the toolkit automatically unmanages a dialog whenever any of the action area buttons are activated, excep
the Help button. This behavior is controlled by XmNautoUnmanage, which defaults to True. However, if you set
this resource to False, the callback routines for the buttons in the action area have to control the behavior on the
own. In the source code the callback routine pops down the dialog when the reason is XmCR_OK or XmCR_CAN
but not when it is XmCR_HELP.

6.6 Piercing the Dialog Abstraction
As described earlier, Motif treats dialogs as if they are single user—interface objects. However, there are times wi
you need to break this abstraction and work with some of the individual widgets that make up a dialog. This secti

describes how the dialog convenience routines work, how to work directly with the DialogShell, and how to acce
the widgets that are internal to dialogs.

6.6.1 Convenience Routines

The fact that Motif dialogs are self-sufficient does not imply that they are black boxes that perform magic that yc
cannot perform yourself. For example, the convenience routines for the MessageDialog types follow these basic ste

» Create a popup widget of type xmDialogShellWidgetClass using XtCreatePopupShell().
» Create a widget of type xmMessageBoxWidgetClass as the child of the DialogShell.

127

6 Introduction to Dialogs 6.6.2 The DialogShell

» Set the XmNdialogType resource for the dialog.
« Install a callback routine for the XmNdestroyCallback resource of the MessageBox, so that it
automatically destroys its DialogShell parent.

The XmNdialogType resource can be set to one of the following values:

XmDIALOG_ERROR
XmDIALOG_INFORMATION
XmDIALOG_MESSAGE
XmDIALOG_QUESTION
XmDIALOG_TEMPLATE
XmDIALOG_WARNING
XmDIALOG_WORKING

The type of the dialog does not affect the kind of widget that is created. The only thing the type affects is the graphi
symbol that is displayed in the control area of the dialog. The convenience routines set the resource based on the
routine that is called (e.g. XmCreateErrorDialog() sets the resource to XmDIALOG_ERROR). The widget
automatically sets the graphical symbol based on the dialog type. You can change the type of a dialog after it is
created using XtVaSetValues(); modifying the type also changes the dialog symbol that is displayed.

The Motif dialog convenience routines create DialogShells internally to support the single—object dialog abstractic
With these routines, the toolkit is responsible for the DialogShell, so the dialog widget uses it
XmNdestroyCallback to destroy its parent upon its own destruction. If the dialog is unmapped or unmanaged, so
is its DialogShell parent. The convenience routines do not add any resources or call any functions to support
special relationship between the dialog widget and the DialogShell, since most of the code that handles the interac
is written into the internals of the BulletinBoard.

6.6.2 The DialogShell

As your programs become more complex, you may eventually have to access the DialogShell parent of a dia
widget in order to get certain things done. This section examines DialogShells as independent widgets and descr
how they are different from other shell widgets. There are three main features of a DialogShell that differentiate
from an ApplicationShell and a TopLevelShell.

« A DialogShell cannot be iconified by the user or by the application.

* When the parent of a DialogShell is iconified, withdrawn, unmapped, or destroyed, the DialogShell children
of that window are withdrawn or destroyed.

* A DialogShell is always placed on top of the shell widget that owns the parent of the DialogShell.

The DialogShell is subclassed from the TransientShell and VendorShell classes. A shell that is subclassed from
TransientShell cannot be iconified independently of its parent. However, if the parent of a DialogShell is iconified or
unmapped, the DialogShell is unmapped as well. If the parent is destroyed, so is the DialogShell and the dialog witl
it. Remember, the parent of the DialogShell is another widget somewhere in the application, such as a Label, a
PushButton, as ApplicationShell, or even another DialogShell. For example, if the callback for PushButton creates ¢
dialog, the PushButton might be designated as the owner of the dialog. If the shell that contains the PushButton is
iconified, the dialog is also withdrawn from the screen. If the PushButton's shell or the PushButton itself is destroye
the dialog is destroyed as well.

The parent—child relationship between a DialogShell and its parent is different from the classic case, where the pa
actually contains the child within its geometrical bounds. The DialogShell widget is a popup child of its parent, whic
means that the usual geometry—-management relationship does not apply. Nonetheless, the parent widget mu:
managed in order for the child to be displayed. If a widget has popup children, those children are not mapped to

128

6 Introduction to Dialogs 6.6.2 The DialogShell

screen if the parent is not managed, which means that you must never make a menu item the parent of a DialogSh

Assuming that the parent is displayed, the window manager attempts to place the DialogShell based on the valu
the XmNdefaultPosition BulletinBoard resource. The default value of this resource is True, which means that

the window manager positions the DialogShell so that it is centered on top of its parent. If the resource is sef
False, the application and the window manager negotiate about where the dialog is placed. This resource is on
relevant when the BulletinBoard is the immediate child of a DialogShell, which is always the case for Motif dialogs.

you want, you can position the dialog by setting the XmNx and XmNy resources for the dialog widget. Positioning
dialog on the screen must be done through a XmNmapCallback routine, which is called whenever the applicatiol
calls XtManageChild(). See Chapter 7, Custom Dialogs, for a discussion about dialog positioning.

The Motif Window Manager imposes an additional constraint on the stacking order of the DialogShell and its pare
mwm always forces the DialogShell to be directly on top of its parent in the stacking order. The result is that the st
that contains the widget acting as the parent of the DialogShell cannot be placed on top of the dialog. This behavic
defined by the Motif Style Guide and is enforced by the Motif Window Manager and the Motif toolkit. Many
end-users have been known to report the behavior as an application—design bug, so you may want to describe
behavior explicitly in the documentation for your application, in order to prepare the user ahead of time.

Internally, DialogShell widgets communicate frequently with dialog widgets in order to support the single—entity
abstraction promoted by the Motif toolkit. However, you may find that you need to access the DialogShell part of
Motif dialog in order to query information from the shell or to perform certain actions on it. The include file
<Xm/DialogS.h> provides a convenient macro for identifying whether or not a particular widget is a DialogShell:

#define XmlisDialogShell(w) XtlsSubclass(w, xmDialogShellWidgetClass)

If you need to use this macro, or you want to create a DialogShell using XmCreateDialogShell(), you need to
include <Xm/DialogS.h>.

The macro is useful if you want to determine whether or not a dialog widget is the direct child of a DialogShell. F¢
example, earlier in this chapter, we mentioned that the Motif Style Guide suggests that if the user activates the
button in a MessageDialog, the entire dialog should be popped down. If you have created a MessageDialog with
using XmCreateMessageDialog() and you want to be sure that the same thing happens when the user presses
the OK button in that dialog, you need to test whether or not the parent is a DialogShell before you pop down t
dialog. The following code fragment shows the use of the macro in this type of situation:

/* traverse up widget tree till we find a window manager shell */
Widget
GetTopShell(widget)
Widget widget;
{
while (widget && 'XmIsWMShell (widget))
widget = XtParent (widget));

return widget;

}

void

ok_callback(dialog, client_data, call_data)
Widget dialog;

XtPointer client_data;

XtPointer call_data;

/* do whatever the callback needs to do ... */

129

6 Introduction to Dialogs 6.6.3 Internal Widgets

[* if immediate parent is not a DialogShell, mimic the same * behavior as if it were (i.e., pop down the parent.) */ |
(!XmlsDialogShell (XtParent (dialog))) XtPopdown (GetTopShell (dialog)); } The Motif toolkit defines similar
macros for all of its widget classes. For example, <Xm/MessageB.h> defines the macro XmlsMessageBox():

#define XmIsMessageBox(w) XtlsSubclass (w, xmMessageBoxWidgetClass)

This macro determines whether or not a particular widget is subclassed from the MessageBox widget class. Since :
of the MessageDialogs are really instances of the MessageBox class, the macro covers all of the different types of

MessageDialogs. If the widget is a MessageBox, the macro returns True whether or not the widget is an immediate
child of a DialogShell. Note that this macro does not return True if the widget is a DialogShell.

6.6.3 Internal Widgets

All of the Motif dialog widgets are composed of primitive subwidgets such as Labels, PushButtons, and TextFie
widgets. For most tasks, it is possible to treat a dialog as a single entity. However, there are some situations when
useful to be able to get a handle to the widgets internal to the dialog. For example, one way to set the default bu
for a dialog is to use the XmNdefaultButton resource. The value that you specify for this resource must be a
widget ID, so this is one of those times when it is necessary to get a handle to the actual subwidgets contained witt
dialog.

The Motif toolkit provides routines that allow you to access the internal widgets. For MessageDialogs, you c
retrieve the subwidgets using XmMessageBoxGetChild(), which has the following form:

Widget
XmMessageBoxGetChild(widget, child)
Widget widget;
unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the follow
values:

XmDIALOG_OK_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_MESSAGE_LABEL
XmDIALOG_SEPARATOR
XmDIALOG_SYMBOL_LABEL

The values refer to the different widgets in a MessageDialog and they should be self-explanatory. For
SelectionDialogs, the toolkit provides the XmSelectionBoxGetChild() routine. This routine is identical to
XmMessageBoxGetChild(), except that it takes different values for the different widgets in a SelectionDialog.
The routine is discussed in Chapter 6, Selection Dialogs.

One method that you can use to customize the predefined Motif dialogs is to unmanage the subwidgets that
inappropriate for your purposes. To get the widget ID for a widget, so that you can pass it t
XtUnmanageChild(), you need to call XmMessageBoxGetChild(). You can also use this routine to get a

handle to a widget that you want to temporarily disable. These techniques are demonstrated in the following cc
fragment:

text = XmStringCreateLocalized ("You have new mail.");
XtSetArg (args[0], XmNmessageString, text);

130

6 Introduction to Dialogs 6.7 Dialog Modality

dialog = XmCreatelnformationDialog (parent, "message", args, 1);
XmStringFree (text);

XtSetSensitive (

XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
XtUnmanageChild (

XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));

The output of a program using this code fragment is shown in the figure.

]]

=| notice_popup

i ¥Yan have new mail.

OK I iely |

MessageDialog with an unmanaged Cancel button and an insensitive Help button

Since the message in this dialog is so simple, it does not make sense to have both an OK and a Cancel button, s
unmanage the latter. On the other hand, it does make sense to have a Help button. However, there is currently no
available, so we make the button unselectable by desensitizing it using XtSetSensitive().

6.7 Dialog Modality

The concept of forcing the user to respond to a dialog is known as modality. Modality governs whether or not the u
can interact with other windows on the desktop while a particular dialog is active. Dialogs are either modal «
modeless. There are three levels of modality: primary application modal, full application modal, and system modal.
all cases, the user must interact with a modal dialog before control is released and normal input is re-sumed. |
system modal dialog, the user is prevented from interacting with any other window on the display. Full applicatic
modal dialogs allow the user to interact with any window on the desktop except those that are part of the sa
application as the modal window. Primary application modal dialogs allow the user to interact with any other windo
on the display except for the window that is acting as the parent for this particular dialog.

For example, if the user selected an action that caused an error dialog to be displayed, the dialog could be prin
application modal, so that the user would have to acknowledge the error before she interacts with the same winc
again. This type of modality does not restrict her ability to interact with another window in the same applicatior
provided that the other window is not the one acting as the parent for the modal dialog.

Modal dialogs are perhaps the most frequently misused feature of a graphical user interface. Programmers who fa
grasp the concept of event—driven programming and design, whereby the user is in control, often fall into tl
convenient escape route that modal dialogs provide. This problem is difficult to detect, let alone cure, because th
are just as many right ways to invoke modal dialogs as there are wrong ways. Modality should be used in moderat
but it should also be used consistently. Let's examine a common scenario. Note that this example does not neces:t
favor using modal dialogs; it is presented as a reference point for the types of things that people are used to doin
tty—based programs.

131

6 Introduction to Dialogs 6.7 Dialog Modality

A text editor has a function that allows the user to save its text to a file. In order to save the text, the program neet
filename. Once it has a filename, the program needs to check that the user has sufficient permission to open or ci
the file and it also needs to see if there is already some text in the file. If an error condition occurs, the program ne
to notify the user of the error, ask for a new filename, or get permission to overwrite the file's contents. Whatever 1
case, some interaction with the user is necessary in order to proceed. If this were a typical terminal-based applical
the program flow would be similar to that in the following code fragment:

FILE *fp;
char buf[BUFSIZ], file[BUFSIZ];
extern char *index();

printf ("What file would you like to use? ");

if (I(fgets (file, sizeof file, stdin)) || file[0] == 0) {
puts ("Cancelled.");
return;

}
(index (file, '0)) = 0; / get rid of newline terminator */

/* "a+" creates file if it doesn't exist */
if (/(fp = fopen (file, "a+"))) {

perror (file);

return;

}

if (ftell (fp) > 0) { /* There's junk in the file already */
printf ("Overwrite contents of %s? ", file);
buf[0] = 0;
if (I(fgets (buf, sizeof buf, stdin)) || buf[0] == 0 ||
buf[0] == 'n" || buf[0] == 'N") {
puts ("Cancelled.");
fclose (fp);
return;

}
}

rewind (fp);

This style of program flow is still possible with a graphical user interface system using modal dialogs. In fact, the
style is frequently used by engineers who are trying to port tty—based applications to Motif. It is also a logical
approach to programming, since it does one task followed by another, asking only for information that it needs whel
needs it.

However, in an event—driven environment, where the user can interact with many different parts of the progrs
simultaneously, displaying a series of modal dialogs is not the best way to handle input and frequently it's just pl:
wrong as a design approach. You must adopt a new paradigm in interface design that conforms to the capabilitie
the window system and meets the expectations of the user. It is essential that you understand the event-driven nr
if you want to create well-written, easy—-to—-use applications.

Window-based applications should be modeled on the behavior of a person filling out a form, such as an employm
application or a medical questionnaire. Under this scenario, you are given a form asking various questions. You tak
to your seat and fill it out however you choose. If it asks for your license number, you can get out your driver's licen
and copy down the number. If it asks for your checking account number, you can examine your checkbook for tt
information. The order in which you fill out the application is entirely up to you. You are free to examine the entir
form and fill out whatever portions you like, in whatever order you like.

132

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

When the form is complete, you return it to the person who gave it to you. The attendant can check it over to se
you forgot something. If there are errors, you typically take it back and continue until it's right. The attendant ce
simply ask you the question straight out and write down whatever you say, but this prevents him from doing ott
work or dealing with other people. Furthermore, if you don't know the answer to the question right away, then yc
have to take the form back and fill it out the way you were doing it before. No matter how you look at it, this proce:
is not an interview where you are asked questions in sequence and must answer them that way. You are suppos
prepare the form off-line, without requiring interaction from anyone else.

Window-based applications should be treated no differently. Each window, or dialog, can be considered to be a fc
of some sort. Allow the user to fill out the form at her own convenience and however she chooses. If she wants
interact with other parts of the application or other programs on the desktop, she should be allowed to do so. When
user selects one of the buttons in the action area, this action is her way of returning the form. At this time, you rr
either accept it or reject it. At no point in the process so far have we needed a modal dialog.

Once the form has been submitted, you can take whatever action is appropriate. If there are errors in any section o
dialog, you may need to notify the user of the error. Here is where a modal dialog can be used legitimately. F
example, if the user is using a FileSelectionDialog to specify the file she wants to read and the file is unreadable, t
you must notify her so that she can make another selection. In this case, the notification is usually in the form of
ErrorDialog, with a message that explains the error and an OK button. The user can read the message and pres
button to acknowledge the error.

It is often difficult to judge what types of questions or how much information is appropriate in modal dialogs. The rul
of thumb is that questions in modal dialogs should be limited to simple, yes/no questions. You should not prompt
any information that is already available through an existing dialog, but instead bring up that dialog and instruct t
user to provide the necessary information there. You should also avoid posting modal dialogs that prompt fo
filename or anything else that requires typing. You should be requesting this type of information through the te
fields of modeless dialog boxes.

As for the issue of forcing the user to fill out forms in a particular order, it may be perfectly reasonable to require tt
type of interaction. You should implement these restrictions by managing and unmanaging separate dialogs, ra
than by using modal dialogs to prevent interaction with all but a single dialog.

All of these admonitions are not to suggest that modal dialogs are rare or that you should avoid using them at all cc
On the contrary, they are extremely useful in certain situations, are quite common, and are used in a wide variet)
ways——even those that we might not recommend. We have presented all of these warnings because modal dialog
frequently misused and programs that use fewer of them are usually better than those that use more of them. M
dialogs interrupt the user and disrupt the flow of work in an application. There is no sanity checking to prevent y
from misusing dialogs so it is up to you to keep the use of modal dialogs to a minimum.

6.7.1 Implementing Modal Dialogs

Once you have determined that you need to implement a modal dialog, you can use the -XmNdialogStyle resource
to set the modality of the dialog. This resource is defined by the BulletinBoard widget class; it is only relevant whe
the widget is an immediate child of a DialogShell. The resource can be set to one of the following values: The va
XmDIALOG_APPLICATION_MODAL is used for backwards compatibility with Motif 1.0; it is defined to be the same
as XmDIALOG_PRIMARY_APPLICATION_MODAL.

XmDIALOG_MODELESS
XmDIALOG_PRIMARY_APPLICATION_MODAL
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

133

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

XmDIALOG_MODELESS is the default value for the resource, so unless you change the value any dialog that you
create will be modeless.

When you use one of the modal values, the user has no choice but to respond to your dialog box before continuin
interact with the application. If you use modality at all, you should probably avoid using
XmDIALOG_SYSTEM_MODAL, since it is rarely necessary to restrict the user from interacting with all of the otl
applications on the desktop. This style of modality is typically reserved for system-level interactions. Under the Mo
Window Manager, when a system modal dialog is popped up, if the user moves the mouse outside of the mo
dialog, the cursor turns into the international "do not enter" symbol. Attempts to interact with other windows cause t
server to beep.

the source code shows a sample program that displays a dialog box that the user must reply to before continuir
interact with the application. XtSetLanguageProc() is only available in X11R5; there is no corresponding
function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

/* modal.c —— demonstrate modal dialogs. Display two pushbuttons
* each activating a modal dialog.

*/

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

/* main() ——create a pushbutton whose callback pops up a dialog box */
main(argc, argv)
char *argv[];
{
XtAppContext app;
Widget toplevel, button, rowcolumn;
void pushed();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

rowcolumn = XtCreateManagedWidget ("rowcolumn”,
xmRowColumnWidgetClass, toplevel, NULL, 0);

button = XtCreateManagedWidget ("Application Modal",
xmPushButtonWidgetClass, rowcolumn, NULL, 0);
XtAddCallback (button, XmNactivateCallback,
pushed, XmDIALOG_FULL_APPLICATION_MODAL);
button = XtCreateManagedWidget ("System Modal",
xmPushButtonWidgetClass, rowcolumn, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,
XmDIALOG_SYSTEM_MODAL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

/* pushed() ——the callback routine for the main app's pushbutton.
* Create either a full-application or system modal dialog box.

*/

void

pushed(widget, client_data, call_data)

Widget widget;

134

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

XtPointer client_data;
XtPointer call_data;
{
static Widget dialog;
XmString t;
extern void dlg_callback();
unsigned char modality = (unsigned char) client_data;

[* See if we've already created this dialog —— if so,
* we don't need to create it again. Just re—pop it up.
*/
if (\dialog) {
Arg args[5];
intn=0;
XmString ok = XmStringCreatelLocalized ("OK");
XtSetArg(args[n], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNcancelLabelString, ok); n++;
dialog = XmCreatelnformationDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtUnmanageChild (
XmMessageBoxGetChild (dialog, XmDIALOG_OK_BUTTON));
XtUnmanageChild (
XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));
}

t = XmStringCreatelLocalized ("You must reply to this message now!");
XtVaSetValues (dialog,
XmNmessageString, t,
XmNdialogStyle, = modality,
NULL);
XmStringFree (t);
XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

}

void
dig_callback(dialog, client_data, call_data)
Widget dialog;
XtPointer client_data;
XtPointer call_data;
{
XtPopdown (XtParent (dialog));

}

The output of this program is shown in the figure.

135

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

J J
~| modal | |l |
Application Mndall |

=| nntice_pnpup

Sy=tem AMadal

J

i You musl reply (o (his message now!

_ EE|

Output of modal.c

This program demonstrates both application modal and system modal dialogs. The value for the XmNdialogType
resource is passed as client data to the callback routine that posts the dialog.

6.7.2 Forcing an Immediate Response

In the source code once the dialog is posted, the function returns so that XtAppMainLoop() can continue to process
the events. If the function does not return, the application will not respond to user events and, for that matter, -
dialog will not even be displayed. Just because a dialog is realized and managed does not mean that it is displaye
the screen, as events must be processed in order for it to appear. See Chapter 21, Advanced Dialog Programming
a discussion of this phenomenon. (See Volume One, Xlib Programming Manual, for more information on even
processing.)

However, there are situations where it would be nice not to have to return from the function and break its flow
control. As an example, consider a function that allows the user to perform a particularly dangerous action, suct
removing or overwriting a file. What you'd like to do is prompt the user first and allow her to reconsider the actio
before proceeding. If she confirms the action, you'd like to continue from within the same function without having t
return in order to process events.

In order to write this type of function, we need to find a way to process the events that display and manage the dis
without returning to the main loop. The user also needs to be able to respond to the dialog, so we really need to al
normal event processing to continue in the context of the function. Let's assume that there is a hypothetical functi
AskUser(), that we can use in the following way:

if (AskUser ("Are you sure you want to do this?") == YES) {
[* proceed with action... */

}

The function AskUser() should post a full application modal MessageDialog, wait for the user to respond to the
dialog, and return a predefined value for either YES or NO. The magic of the function is to get around the requireme
that events can only be read and processed directly from XtAppMainLoop(). The code for such a function is shown
in the source code XmStringCreateLocalized() is only available in Motif 1.2;

XmStringCreateSimple() is the corresponding function in Motif 1.1.

#define YES 1
#define NO 2

136

/*

6 Introduction to Dialogs

* AskUser() —— a generalized routine that asks the user a question
* and returns the Yes/No response.

*/

int

AskUser(parent, question)

Widget parent;

char *question;

{

static Widget dialog;
XmString text, yes, no;
static int answer;

extern void response();
extern XtAppContext app;

if (Idialog) {
dialog = XmCreateQuestionDialog (parent, "dialog"”, NULL, 0);
yes = XmStringCreatelLocalized ("Yes");
no = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
XmNokLabelString, yes,
XmNcancelLabelString, no,
NULL);
XtSetSensitive (
XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON),
False);
XtAddCallback (dialog, XmNokCallback, response, &answer);
XtAddCallback (dialog, XmNcancelCallback, response, &answer);
XmStringFree (yes);
XmStringFree (no);
}
answer = 0;
text = XmStringCreateLocalized (question);
XtVaSetValues (dialog,
XmNmessageString, text,
NULL);
XmStringFree (text);
XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

[* while the user hasn't provided an answer, simulate main loop.
* The answer changes as soon as the user selects one of the
* puttons and the callback routine changes its value.
*
while (answer == 0)
XtAppProcessEvent (app, XtIMAII);

XtPopdown (XtParent (dialog));
return answer;

}

/* response() ——The user made some sort of response to the

* question posed in AskUser(). Set the answer (client_data)
* accordingly and destroy the dialog.
*/

void

response(widget, client_data, call_data)
Widget widget;

XtPointer client_data;

XtPointer call_data;

6.7.2 Forcing an Immediate Response

137

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs—>reason) {

case XmCR_OK:
*answer = YES;
break;

case XmCR_CANCEL:
*answer = NO,;
break;

default:
return;

}
}

The first parameter to the function is the widget that acts as the parent of the new dialog. It is important to choose tl
widget wisely. The parent widget must not be a gadget or an unrealized widget; it should be a widget that is current
mapped to the screen. Widgets that are menu items are not good candidates, since they are not mapped to the scr
for very long. The top—level shell widget of the widget that caused the callback function to be invoked is typically a
good choice. The second parameter is the string that is displayed in the dialog.

The routine is intended to be used to display a dialog that asks a Yes/No question, so we change the OK and Cal
labels to say Yes and No, respectively. The routine creates a QuestionDialog as a static Widget, which allows us
reuse the dialog, rather than create it each time the function is called. This technique may improve performance
some machines. The modality of the dialog and the labels for the PushButtons in the action area are set at cree
time, but the actual message string is set each time that the function is called, since the message can change. Wh
install the callback routines for the buttons, we use the address of the answer variable as the client data. As a resi
when the user responds to the question by selecting the Yes or No button, the callback routine has access tc
variable and can change its value accordingly.

The while loop is where the application waits for the user to make a selection. The loop exits when the variable
answer is changed from its initial value (0) to either YES (1) or NO (2) by the callback routine. By using
XtAppProcessEvent(), we have effectively reproduced the XtAppMainLoop() function that is used in the

main application. Rather than returning to that level and breaking our flow of control, we have introduced a miniatu
main loop in the function itself.

While the AskUser() routine in the source code is useful as it is written, there are a number of enhancements tha
will make it even more useful. By using what we've learned in this chapter, we can come up with a simple, y
extremely robust interface for prompting the user for responses to questions without breaking the natural flow
control in the application. the source code demonstrates a generalized version of AskUser() in a complete
application. The program ask_user.c allows the user to execute UNIX commands that create and remove a tempo
file. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1.

[* ask_user.c —— the user is presented with two pushbuttons.

* The first creates a file (/tmp/foo) and the second removes it.

* In each case, a dialog pops up asking for verification of the action.

*

* This program is intended to demonstrate an advanced implementation
* of the AskUser() function. This time, the function is passed the

* strings to use for the OK button and the Cancel button as well as

* the button to use as the default value.

*/

138

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

#include <Xm/DialogS.h>
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

#define YES 1
#define NO 2

/* Generalize the question/answer process by creating a data structure
* that has the necessary labels, questions and everything needed to
* execute a command.

*
typedef struct {
char *label; /* label for pushbutton used to invoke cmd */
char *question; /* question for dialog box to confirm cmd */
char *yes; /* what the "OK" button says */
char *no; [* what the "Cancel" button says */
int dflt; /*which should be the default answer */
char *cmd; /* actual command to execute (using system()) */
} QandA;

QandA touch_foo ={

"Create", "Create /tmp/foo?", "Yes", "No", YES, "touch /tmp/foo"
2
QandA rm_foo = {

"Remove", "Remove /tmp/foo?", "Yes", "No", NO, "rm /tmp/foo"

2
XtAppContext app;

main(argc, argv)
int argc;
char *argv[];

Widget toplevel, button, rowcolumn;
XmString label;
void pushed();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

rowcolumn = XtVaCreateManagedWidget (“rowcolumn”,
xmRowColumnWidgetClass, toplevel, NULL);

label = XmStringCreatelocalized (touch_foo.label);
button = XtVaCreateManagedWidget ("button",
xmPushButtonWidgetClass, rowcolumn,
XmNlabelString, label,
NULL);
XtAddCallback (button, XmNactivateCallback, pushed, &touch_foo);
XmStringFree (label);

label = XmStringCreatelLocalized (rm_foo.label);

button = XtVaCreateManagedWidget ("button”,
xmPushButtonWidgetClass, rowcolumn,
XmNlabelString, label,
NULL);

XtAddCallback (button, XmNactivateCallback, pushed, &rm_foo);

139

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

XmStringFree (label);

XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() ——when a button is pressed, ask the question described
* by the QandA parameter (client_data). Execute the cmd if YES.
*/

void

pushed(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{
QandA *quest = (QandA *) client_data;

if (AskUser (widget, quest—>question, quest->yes, quest->no,
quest—>dfit) == YES) {
printf ("Executing: %s0, quest—>cmd);
system (quest—>cmd);
} else
printf ("Not executing: %s0, quest—>cmd);
}

/*
* AskUser() —— a generalized routine that asks the user a question
* and returns a response. Parameters are: the question, the labels
* for the "Yes" and "No" buttons, and the default selection to use.
*
AskUser(parent, question, ansl, ans2, default_ans)
Widget parent;
char *question, *ans1, *ans2;
int default_ans;
{
static Widget dialog; /* static to avoid multiple creation */
XmString text, yes, no;
static int answer;
extern void response();

if (\dialog) {
dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
XtVaSetValues (dialog,
XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
NULL);
XtSetSensitive (
XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON),
False);
XtAddCallback (dialog, XmNokCallback, response, &answer);
XtAddCallback (dialog, XmNcancelCallback, response, &answer);
}
answer = 0;
text = XmStringCreateLocalized (question);
yes = XmStringCreateLocalized (ansl);
no = XmStringCreatelLocalized (ans2);
XtVaSetValues (dialog,
XmNmessageString, text,
XmNokLabelString, yes,
XmNcancelLabelString, no,
XmNdefaultButtonType, default_ans == YES ?

140

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

XmDIALOG_OK_BUTTON : XmDIALOG_CANCEL_BUTTON,
NULL);
XmStringFree (text);
XmStringFree (yes);
XmStringFree (no);
XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

while (answer == 0)
XtAppProcessEvent (app, XtIMAII);

XtPopdown (XtParent (dialog));

[* make sure the dialog goes away before returning. Sync with server
* and update the display.

*

XSync (XtDisplay (dialog), 0);

XmUpdateDisplay (parent);

return answer;

}

/* response() ——The user made some sort of response to the
* question posed in AskUser(). Set the answer (client_data)
* accordingly.

*

void

response(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{
int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

if (cbs—>reason == XmCR_OK)
*answer = YES;

else if (cbs—>reason == XmCR_CANCEL)
*answer = NO;

The new version of AskUser() is more dynamic than before, since more of the dialog is configurable upon each
invocation of the function. The routine now allows you to specify the message, the labels for the OK and Cancel
buttons, and the default button for the dialog. The flexibility of the routine is achieved at the cost of a few more lines
of source code and additional parameters to the function. The performance of the function is completely unaffected

One case that the new version of AskUser() does not deal with is the need for additional buttons in the action are:
of the dialog. For example, what if you need to provide a Cancel button in addition to the Yes and No answers? Le
say that the user has selected the Quit menu item in a text editor application. Since the user has yet to update
changes to the file that she has been editing, the application posts a dialog that asks her if she wants to updat:
changes before exiting. There are three possible responses:

* Yes, update the changes and exit (Yes).
* No, don't update the changes, but exit anyway (No).
« Don't update the changes and don't exit the application (Cancel).

One easy way to provide these three choices is to set the label for the Help button to Cancel using the

141

6 Introduction to Dialogs 6.8 Summary

XmNhelpLabelString resource. Then you just need to modify the callback function so that it handles the
XmCR_HELP reason and returns a new value for the Cancel button.

However, this solution does not work if you want to provide help in addition to these choices. The defau
MessageDialog only provides three buttons in the action area, although in Motif 1.2 you can add additional actic
area buttons to the dialog. For more information on how to handle this situation, see Chapter 7, Custom Dialogs.

6.8 Summary

Dialogs are used extensively in all window-oriented applications and their uses are quite diverse. As a result, i
impossible to provide numerous examples of the use of any one particular style of dialog. This chapter introduced
implementation of Motif dialogs by using the predefined MessageDialogs as examples. We described how to cre
the dialogs, how to set various dialog resources, how to handle dialog callback routines, and how to implement mc
dialogs. Although our examples used MessageDialogs, much of the discussion is applicable to other types of M
dialogs.

The next chapter deals with the predefined Motif selection dialogs. These dialogs allow you to provide the user witl
group of choices from which to make a selection. Chapter 7, Custom Dialogs, discusses how you can break aw
from the predefined Motif dialogs and build dialogs on your own. Chapter 21, Advanced Dialog Programming, get
into advanced topics in Xt and Motif programming, using various types of MessageDialogs as examples.

142

7 Selection Dialogs

This chapter describes the predefined Motif selection—style dialogs. These dialogs display a list of items, such as f
or commands, and allow the user to select items.

In Chapter 5, Introduction to Dialogs, we introduced the idea that dialogs are transient windows that perform a sing
task in an application. Dialogs may perform tasks that range from displaying a simple message, to asking a quest
to providing a highly interactive window that obtains information from the user. The previous chapter also introduce
MessageDialogs and discussed how they are used by the Motif toolkit. This chapter discusses SelectionDialogs, wi
are at the next level of complexity in predefined Motif dialogs.

In general, SelectionDialogs are used to present the user with a list of choices. The user can also enter a new sele
or edit an existing one by typing in a text area in the dialog. SelectionDialogs are appropriate when the usel
supposed to respond to the dialog with more than just a simple yes or no answer. With respect to the action a
SelectionDialogs have the same default buttons as MessageBoxes (e.g., OK, Cancel, and Help). The dialogs ¢
provide an Apply button, but the button is not always managed by default. SelectionDialogs are meant to be le
transient than MessageDialogs, since the user is expected to do more than read a message.

7.1 Types of SelectionDialogs

As explained in Chapter 5, Introduction to Dialogs, there are four kinds of SelectionDialogs. The SelectionDialog
and the PromptDialog are compound objects composed of a SelectionBox and a DialogShell. To use these obije
you need to include the header file <Xm/SelectioB.h>. The FileSelectionDialog is another compound object made
of a FileSelectionBox and a DialogShell. The include file for this object is <Xm/FileSB.h>. The Command widget i
somewhat different, in that it is typically used as part of a larger interface, rather than as a dialog. To use t
Command widget, include the file <Xm/Command.h>. You can create each of these dialogs using the associc
convenience routines:

XmCreateSelectionBox()
XmCreateSelectionDialog()
XmCreatePromptDialog()
XmCreateFileSelectionBox()
XmCreateFileSelectionDialog()
XmCreateCommand()

Like the MessageDialog convenience routines, each of the SelectionDialog routines creates a dialog widget. In
addition, routines that end in Dialog automatically create a DialogShell as the parent of the dialog widget. Note that
the Command widget does not provide a convenience routine that creates a DialogShell; to put a Command widget
a DialogShell, you must create the DialogShell yourself. All of the convenience functions use the standard format fo
Motif creation routines.

The SelectionBox resource XmNdialogType specifies the type of dialog that has been created. The resource is s
automatically by the dialog convenience routines. Unlike the XmNdialogType resource for MessageDialogs, the
SelectionBox resource cannot be changed once the dialog has been created. The resource can have one ¢
following values:

XmDIALOG_WORK_AREA
XmDIALOG_PROMPT
XmDIALOG_SELECTION

143

7 Selection Dialogs 7.2 SelectionDialogs

XmDIALOG_COMMAND
XmDIALOG_FILE_SELECTION

These values should be self-explanatory, with the exception of XmDIALOG_WORK_AREA. This value is set when
SelectionBox is not the child of a DialogShell and it is not one of the other types of dialogs. In other words, if you
create a SelectionDialog using XmCreateSelectionDialog(), the value is XmDIALOG_SELECTION, but if

you use XmCreateSelectionBox(), the value is XmDIALOG_WORK_AREA. When a SelectionBox is created as

the child of a DialogShell, the Apply button is automatically managed, except if XmNdialogType is set to
XmDIALOG_PROMPT. Otherwise, the button is created but not managed.

The different types of SelectionDialogs are meant to be used for unique purposes. Each dialog provides differ
components that the user can interact with to perform a task. In the following sections, we examine each of 1
SelectionDialogs in turn.

7.2 SelectionDialogs

The SelectionDialog provides a ScrolledList that allows the user to select from a list of choices, as well as a TextFi
where the user can type in choices. When the user makes a selection from the list, the selected item is displayed i
text entry area. The user can also type new or existing choices into the text entry area directly. The dialog does
take any action until the user activates one of the buttons in the action area or presses the RETURN key. If the
double-clicks on an item in the List, the item is displayed in the text area and the OK button is automaticall
activated. the source code demonstrates the use of a SelectionDialog. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif

1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

/* select_dlg.c —— display two pushbuttons: days and months.
* When the user selections one of them, post a selection

* dialog that displays the actual days or months accordingly.
* When the user selects or types a selection, post a dialog

* the identifies which item was selected and whether or not
* the item is in the list.

*

* This program demonstrates how to use selection boxes,

* methods for creating generic callbacks for action area

* selections, abstraction of data structures, and a generic

* MessageDialog posting routine.

*

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

Widget PostDialog();

char *days[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday"”, "Friday", "Saturday"

h
char *months[] = {

"January", "February", "March", "April", "May", "June",

"July”, "August”, "September”, "October", "November", "December"
h
typedef struct {

char *label;
char **strings;

144

7 Selection Dialogs

int size;

} Listlitem;

Listltem month_items = { "Months", months, XtNumber (months) };
Listltem days_items = { "Days", days, XtNumber (days) };

/* main() ——create two pushbuttons whose callbacks pop up a dialog */
main(argc, argv)
char *argv[];

}

Widget toplevel, button, rc;
XtAppContext app;
void pushed();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos"”, NULL, O,
&argc, argv, NULL, NULL);

rc = XtVaCreateWidget ("rowcolumn",
xmRowColumnWidgetClass, toplevel, NULL);

button = XtVaCreateManagedWidget (month_items.label,
xmPushButtonWidgetClass, rc, NULL);
XtAddCallback (button, XmNactivateCallback, pushed, &month_items);

button = XtVaCreateManagedWidget (days_items.label,
xmPushButtonWidgetClass, rc, NULL);
XtAddCallback (button, XmNactivateCallback, pushed, &days_items);

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

/* pushed() ——the callback routine for the main app's pushbutton.
* Create a dialog containing the list in the items parameter.

*

void

pushed(widget, client_data, call_data)
Widget widget;

XtPointer client_data;

XtPointer call_data;

{

Widget dialog;

XmString t, *str;

inti;

extern void dialog_callback();

Listltem *items = (Listltem *) client_data;

str = (XmString *) XtMalloc (items—>size * sizeof (XmString));
t = XmStringCreatelLocalized (items—>label);
for (i = 0; i < items—>size; i++)

str[i] = XmStringCreatelLocalized (items—>stringsi]);
dialog = XmCreateSelectionDialog (widget, "selection", NULL, 0);
XtVaSetValues (dialog,

XmNlistLabelString, t,

XmNlistltems, str,

XmNlistitemCount, items—>size,

XmNmustMatch, True,

NULL);

7.2 SelectionDialogs

145

7 Selection Dialogs 7.2 SelectionDialogs

XtSetSensitive (

XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
XtAddCallback (dialog, XmNokCallback, dialog_callback, NULL);
XtAddCallback (dialog, XmNnoMatchCallback, dialog_callback, NULL);
XmStringFree (t);
while (—=i >=0)

XmStringFree (str[i]); /* free elements of array */

XtFree (str); /* now free array pointer */
XtManageChild (dialog);

XtPopup (XtParent (dialog), XtGrabNone);
}

/* dialog_callback() ——The OK button was selected or the user
* input a name by himself. Determine whether the result is
* a valid name by looking at the "reason" field.

*/

void
dialog_callback(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{

char msg[256], *prompt, *value;

int dialog_type;

XmSelectionBoxCallbackStruct *cbs =
(XmSelectionBoxCallbackStruct *) call_data;

switch (cbs—>reason) {
case XmCR_OK:
prompt = "Selection: ";
dialog_type = XmDIALOG_MESSAGE;
break;
case XmMCR_NO_MATCH:
prompt = "Not a valid selection: ";
dialog_type = XmDIALOG_ERROR;
break;
default:
prompt = "Unknown selection: ";
dialog_type = XmDIALOG_ERROR;
}
XmStringGetLtoR (cbs—>value, XmFONTLIST_DEFAULT_TAG, &value);
sprintf (msg, "%s%s", prompt, value);
XtFree (value);
(void) PostDialog (XtParent (XtParent (widget)), dialog_type, msg);
if (cbs—>reason != XmMCR_NO_MATCH) {
XtPopdown (XtParent (widget));
XtDestroyWidget (widget);
}
}

/*

* PostDialog() —— a generalized routine that allows the programmer
* to specify a dialog type (message, information, error, help,

* etc..), and the message to show.

*/

Widget

PostDialog(parent, dialog_type, msg)

Widget parent;

int dialog_type;

char *msg;

146

7 Selection Dialogs

Widget dialog;
XmString text;

dialog = XmCreateMessageDialog (parent, "dialog”, NULL, 0);

text = XmStringCreatelLocalized (msg);
XtVaSetValues (dialog,
XmNdialogType, dialog_type,
XmNmessageString, text,
NULL);
XmStringFree (text);
XtUnmanageChild (

XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));

XtSetSensitive (

XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
XtAddCallback (dialog, XmNokCallback, XtDestroyWidget, NULL);

XtManageChild (dialog);
return dialog;

}

The output of the program is shown in the figure.

| Daye |

solaction_popup

L T

Janumry
Fali 14y
LETRES
2oril

Jane

Jaly
Aogquct
S=pzenbex

Selection

=5

(W

| Nag]

’ CK | Appl§'| Canecl

Fiein

7.2 SelectionDialogs

Output of select_dlg.c

The program displays two PushButtons, one for months and one for the days of the week. When either buttor
activated, a SelectionDialog that displays the list of items corresponding to the button is popped up. In keeping w
the philosophy of modular programming techniques, we have broken the application into three routines —— tv
callbacks and one general-purpose message posting function. The lists of day and month names are stored as arr:
strings. We have declared a data structure, Listltem, to store the label and the items for a list. Two instances of this
data structure are initialized to the correct values for the lists of months and days. We pass these data structures ¢

client_data to the callback function pushed(). This callback routine is associated with both of the

147

7 Selection Dialogs 7.2.1 Callback Routines

PushButtons.

The pushed() callback function creates the SelectionDialogs. Since the list of items for a SelectionDialog must be
specified as an array of XmString values, the list passed in the client_data parameter must be converted. We
create an array of compound strings the size of the list and copy each item into the new array usil
XmStringCreateLocalized(). The resulting list is used as the value for the XmNlistltems resource. The

number of items in the list is specified as the value of the XmNlistitemCount resource. This value must be given
for the list to be displayed. It must be less than or equal to the actual number of items in the list. We also set
XmNlistLabelString resource to specify the label for the list of items in the dialog. The SelectionDialog also
provides the XmNlistVisibleltemCount resource for specifying the number of visible items in the list. We let

the dialog use the default value for this resource.

The final resource that we set for the SelectionDialog is XmNmustMatch. This resource controls whether an iter
that the user types in the text entry area must match one of the items in the list. By setting the resource to True,
are specifying that the user cannot make up a month or day name. When the user activates the OK button or pre
the RETURN key, the widget checks the item in the text entry area against those in the list. If the selection doe:
match any of the items in the list, the program pops up a dialog that indicates the error.

Once the dialog is created, we desensitize its Help button because we are not providing help. We install a callb
routine for the OK button using the XmNokCallback. To handle the case when the user types an item that does no
match, we also install a callback routine for the XmNnoMatchCallback. The dialog_callback() routine is

used to handle both cases. We use the reason field of the callback structure to determine why the callback wz
called and act accordingly. The value field of the callback structure contains the selected item. If the item is valid
we use the value to create a dialog that confirms the selection. Otherwise, we post an error dialog that indicates
invalid selection. In both cases we use the generalized function, PostDialog(), to display the MessageDialog. If
the selection is valid, the routine pops down and destroys the SelectionDialog. Otherwise, we leave the dialog pos
so that the user can make another selection.

Just as a point of discussion, you should realize that it was an arbitrary decision to have the PostDialog() function
accept a char strings rather than an XmString. The routine could be modified to use an XmString, but doing so
doesn't buy us anything. If you find that your application deals with one string format more often than the other, y
may want to modify your routines accordingly. You should be aware that converting from one type of string to tr
other is expensive; if it is done frequently, you may see an effect on performance. Another option is for your routine
accept both string types as different parameters. You can pass a valid value for one parameter and NULL for the c
parameter and deal with them accordingly. For more information on handling compound strings, see Chapter 1
Compound Strings.

7.2.1 Callback Routines

The SelectionDialog provides callbacks for its action buttons in the same way as the MessageDialog. Insteac
accessing the PushButton widgets to install callbacks, you use the resources XmNokCallback,
XmNapplyCallback, XmNcancelCallback, and XmNhelpCallback on the dialog widget itself. These

callbacks correspond to each of the four buttons, OK, Apply, Cancel, and Help. The SelectionDialog also provide
the XmNnoMatchCallback for handling the case when the item in the text entry area does not match an item in the
list.

All of these callback routines take three parameters, just like any standard callback routine. The callback structure
is passed to all of the callback routines in the call _data parameter is of type
XmSelectionBoxCallbackStruct. This structure is similar to the one used by MessageDialogs, but it has

more fields. The structure is declared as follows:

148

7 Selection Dialogs 7.2.2 Internal Widgets

typedef struct {
int reason;
XEvent *event;
XmString value;
int length;
} XmSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback routine was invoked. TF
field can be one of the following values:

XmCR_OK
XmCR_APPLY
XmCR_CANCEL
XmCR_HELP
XmCR_NO_MATCH

The value and length fields represent the compound string version of the item that the user selected from the list
or typed into the text entry area. In order to get the actual character string for the item, you have to use
XmStringGetLtoR() to convert the compound string into a character string. (See Chapter 19, Compound Strings,
for a discussion of compound strings.)

7.2.2 Internal Widgets

The SelectionDialog is obviously composed of primitive subwidgets, like PushButtons, Labels, a ScrolledList, and
TextField widget. For most tasks, it is possible to treat the dialog as a single entity because the dialog provic
resources that manage the different components. However, there are some situations where it is useful to be able t
a handle to the widgets internal to the dialog. The Motif toolkit provides the XmSelectionBoxGetChild()
routine to allow you to access the internal widgets. This routine takes the following form:

Widget
XmSelectionBoxGetChild(widget, child)
Widget widget;
unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the follow
values:

XmDIALOG_OK_BUTTON
XmDIALOG_APPLY_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_DEFAULT_BUTTONX
XmDIALOG_LIST
XmDIALOG_LIST_LABEL
XmDIALOG_SELECTION_LABEL
XmDIALOG_TEXT
XmDIALOG_WORK_AREA
XmDIALOG_SEPARATOR

The values refer to the different widgets in a SelectionDialog and they should be self-explanatory, with the exceptic
of XmDIALOG_WORK_AREA. A SelectionDialog can manage a work area child; this value returns the work area
child. You can customize the operation of a SelectionDialog by adding a work area that contains other components
For a detailed discussion of this technique, see Chapter 7, Custom Dialogs.

149

7 Selection Dialogs 7.3 PromptDialogs

One use of XmSelectionBoxGetChild() is to get a handle to the Apply button so that you can manage it. When

you create a SelectionBox that is not a child of a DialogShell, the toolkit creates the Apply button, but it is unmanag
by default. The Apply button is available to the PromptDialog, but it is unmanaged by default. To use the button, y«
must manage it and specify a callback routine, as in the following code fragment:

XtAddCallback (dialog, XmNapplyCallback, dialog_callback, NULL);
XtManageChild (XmSelectionBoxGetChild (dialog, XmDIALOG_APPLY_BUTTON));

The callback routine is the same as the one we set for the OK button, but the reason field in the callback structure
will indicate that it was called as a result of the Apply button being activated.

7.3 PromptDialogs

The PromptDialog is unique among the SelectionDialogs, in that it does not create a ScrolledList object. This dial
allows the user to type a text string in the text entry area and then enter it by selecting the OK button or by press
the RETURN key. the source code shows an example of creating and using a PromptDialoc
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1.

/* prompt_dlg.c —— prompt the user for a string. Two PushButtons

* are displayed. When one is selected, a PromptDialog is displayed
* allowing the user to type a string. When done, the PushButton's

* label changes to the string.

*/

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

main(argc, argv)
char *argv[];

XtAppContext app;
Widget toplevel, rc, button;
void pushed();

XtSetLanguageProc (NULL, NULL, NULL);

[* Initialize toolkit and create toplevel shell */
toplevel = XtVaApplnitialize (&app, "Demos", NULL, 0,
&argc, argv, NULL, NULL);

/* RowColumn managed both PushButtons */

rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

[* Create two pushbuttons —— both have the same callback */

button = XtVaCreateManagedWidget ("PushMe 1",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

button = XtVaCreateManagedWidget ("PushMe 2",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

XtManageChild (rc);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

150

7 Selection Dialogs

/* pushed() ——the callback routine for the main app's pushbuttons.
* Create a dialog that prompts for a new button name.
*/
void
pushed(widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;
{
Widget dialog;
XmString t = XmStringCreateLocalized ("Enter New Button Name:");
extern void read_name();
Arg argsl[5];
intn=0;

* Create the dialog —— the PushButton acts as the DialogShell's

* parent (not the parent of the PromptDialog).

*

XtSetArg (args[n], XmNselectionLabelString, t); n++;

XtSetArg (args[n], XmNautoUnmanage, False); n++;

dialog = XmCreatePromptDialog (widget, "prompt", args, n);
XmStringFree (t); /* always destroy compound strings when done */

[* When the user types the name, call read_name() ... */
XtAddCallback (dialog, XmNokCallback, read_name, widget);

[* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, XtDestroyWidget, NULL);

/* No help is available... */
XtSetSensitive (

XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);

XtManageChild (dialog);

XtPopup (XtParent (dialog), XtGrabNone);

}

/* read_name() ——the text field has been filled in. */
void

read_name(widget, client_data, call_data)

Widget widget;

XtPointer client_data;
XtPointer call_data;
{
Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs =
(XmSelectionBoxCallbackStruct *) call_data;

XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
/* Name's fine —— go ahead and enter it */
XtDestroyWidget(widget);

}

The output of the program is shown in the figure.

7.3 PromptDialogs

151

7 Selection Dialogs 7.4 The Command Widget

— |] prongpl_pupup

Cnter New Button Name:
| Dutton I

OK | cancel| mmein

1 1

Output of prompt_dlg.c

The callback routine for each of the PushButtons, pushed(), creates a PromptDialog that prompts the user to enter
new name for the PushButton. The PushButton is passed as the client_data to the XmNokCallback routine,
read_name(), so that the routine can set the label of the PushButton directly from inside the callback. The
read_name() function destroys the dialog once it has set the label, since the dialog is no longer needed.

If the Cancel button is pressed, the text is not needed, so we can simply destroy the dialog. Since the first paramete
a dialog callback routine is the dialog widget, we can use XtDestroyWidget as the callback routine. Since the
function only takes one parameter, and the widget that is to be destroyed is passed as the first parameter, no client
is needed. We set XmNautoUnmanage to False for the dialog because the application is assuming the
responsibility of managing the dialog. There is no help for the dialog so the Help button is disabled by setting
insensitive.

The text area in the PromptDialog is a TextField widget, so you can get a handle to it and set TextField widc
resources accordingly. Use XmSelectionBoxGetChild() to access the widget. In order to promote the
single—entity abstraction, the dialog provides two resources that affect the TextField widget. You can set tl
XmNtextString resource to change the value of the text string in the widget. Like other string resources, the value
for this resource must be a compound string. The XmNtextColumns resource specifies the width of the TextField in
columns.

In Motif 1.1, one frustrating feature of the predefined SelectionDialogs is that when they are popped up, the TextFi
widget does not receive the keyboard focus by default. If the user is not paying attention, starts typing, and tr
presses the RETURN key, all of the keystrokes will be thrown away except the RETURN, which will activate the Ol
button. Motif 1.2 solves this problem by introducing the XmNinitialFocus resource. This resource specifies the
widget that has the keyboard focus the first time that the dialog is popped up. The text entry area is the default ve
of the resource for SelectionDialogs. If you are using Motif 1.1, you need to warn your users about the problem. Y
can also program around the problem by using XmProcessTraversal() to set the focus to a particular widget.

7.4 The Command Widget

A Command widget allows the user to enter commands and have them saved in a history list widget for lat
reference. The Command widget is composed of a text entry area and a command history list. Unlike all of the ot
predefined Motif dialogs, this widget does not provide any action area buttons. The widget does provide a conveni
interface for applications that have a command-driven interface, such as a debugger.

152

7 Selection Dialogs 7.4 The Command Widget

You can use the convenience routine XmCreateCommand() to create a Command widget or you can use
XtVaCreateWidget() with the class xmCommandWidgetClass. Motif does not provide a convenience routine

for creating a Command widget in a DialogShell. The rationale is that the Command widget is intended to be used
a more permanent basis, since it accumulates a history of command input. A Command widget is typically used
part of a larger interface, such as in a MainWindow, which is why it does not have action buttons. (See Chapter
The Main Window, for an example.) If you want to create a CommandDialog, you will have to create the DialogSh
widget yourself and make the Command widget its immediate child. See Section #sdialogshl in Chapter -
Introduction to Dialogs, for more information about DialogShells.

The Command widget class is subclassed from SelectionBox. There are similarities between the two widgets, in
the user has the ability to select items from a list. However, the list is composed of the commands that have b
previously entered. When the user enters a command, it is added to the list. If the user selects an item from
command history list, the command is displayed in the text entry area. Although the Command widget inheri
resources from the SelectionBox, many of the resources are not applicable since the Command widget does not |
any action area buttons. All of the SelectionBox resources for setting the labels and callbacks of the buttons do
apply to the Command widget.

The Command widget provides a number of resources that can be used to control the command history list. -
XmNhistoryltems and XmNhistoryltemCount resources specify the list of commands and the number of
commands in the list. The XmNhistoryVisibleltemCount resource controls the number of items that are
visible in the command history. XmNhistoryMaxItems specifies the maximum number of items in the history list.
When the maximum value is reached, a command is removed from the beginning of the list to make room for ec
new command that is entered.

The Command widget provides two callback resources, XmNcommandEnteredCallback and
XmNcommandChangedCallback, for the text entry area. When the user changes the text in the command entry
area, the XmNcommandChangedCallback is invoked. If the user presses the RETURN key or double—clicks on an
item in the command history list, the XmNcommandEnteredCallback is called. The callback routine for each of
the callbacks takes the usual three parameters. The callback structure passed to the routines in the call_date
parameter is of type XmCommandCallbackStruct, which is identical to the
XmSelectionBoxCallbackStruct. The possible values for the reason field in the structure are
XmMCR_COMMAND_ENTERED and XmCR_COMMAND_CHANGED.

You can get a handle to the subwidgets of the Command widget using function XmCommandGetChild(). The
function takes the following form:

Widget
XmCommandGetChild(widget, child)
Widget widget;

unsigned char child;

The widget parameter is a handle to a dialog widget. The child parameter is an enumerated value that specifies a
particular subwidget in the dialog. The parameter can have any one of the following values:

XmDIALOG_COMMAND_TEXT
XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL
XmDIALOG_WORK_AREA

The values refer to the different widgets in the Command widget and they should be self-explanatory.

153

7 Selection Dialogs 7.5 FileSelectionDialogs

In order to support the idea that the dialog is a single widget, the toolkit also provides a number of convenien
routines that you can use to modify the Command widget. The function XmCommandSetValue() sets the text in
the command entry area of the dialog. The function takes the following form:

void

XmCommandSetValue(widget, command)
Widget widget;
XmString command;

The command is displayed in the command entry area. The Command widget resource XmNcommand specifies th
text for the command entry area, so you can also set this resource directly. Alternatively, you can use
XmTextSetString() on the Text widget in the dialog to set the command. However, note that the string you

specify to this function is a regular character string, not a compound string.

If you want to append some text to the string in the command entry area, you can use the routit
XmCommandAppendValue(), which takes the following form:

void

XmCommandAppendValue(widget, command)
Widget widget;
XmString command;

The command is added to the end of the string in the command entry area. The function XmCommandError()
displays an error message in the history area of the Command widget. The function takes the following form:

void

XmCommandError(widget, message)
Widget widget;
XmString message;

The error message is displayed until the user enters the next command.

7.5 FileSelectionDialogs

Like the Command widget, the FileSelectionBox is subclassed from SelectionBox. The FileSelectionDialog lool
somewhat different than the other selection dialogs because of its complexity and its unusual widget layout &
architecture. Functionally, the FileSelectionDialog allows the user to move through the file system and select a file
a directory for use by the application. The dialog also lets the user specify a filter that controls the files that a
displayed in the dialog. This filter is generally specified as a regular expression reminiscent of the classic UNI
meta—-characters (e.g., * matches all files, while *.c matches all files that end in .c). the figure shows a
FileSelectionDialog.

154

7 Selection Dialogs 7.5 FileSelectionDialogs

]
=| iesh_pupup s [0

Filter

| feork/E0l3 e 0. peog. 18/coce/chli A+

Lirccterica Files
- T [racezile |X
groc. Lt fzode/cklUsy .. Molistile
Molistale cowr
Ei_= sel

Eil= sel c
"= sel
aramp_dle
Prompz_dlc.c |

| =0 [= fd P
Se:lec:linn

L%

| Aeork/E0l3 e 0. peog. 18/coce/chlG 4

OK | Pilter | cCaneet| Hep

A typical FileSelectionDialog

The control area of the FileSelectionDialog has four components. The filter text entry area specifies the directory ¢
the filter. The directories list displays the directories in the current directory specified by the filter. If the user selects
directory, the filter is modified to reflect the selection. The files list shows the files in the current directory. The
selection text entry area specifies the file selected by the user. If the user selects a file from the file list, the f
pathname is displayed in the selection text entry area.

The FileSelectionDialog has four buttons in its action area. The OK, Cancel, and Help buttons are the same as
other SelectionDialogs. The Filter button acts on the directory and pattern specified in the filter text entry area. F
example, the user could enter /usr/src/motif/lib/Xm/* as the filter. In this case, the directory is /usr/src/motif/lib/Xr
and the pattern is the "*". When the user selects the Filter button or presses RETURN in the Text widget, tt
directory part of the filter is searched and all of the directories within that directory are displayed in the directories li
The pattern part is then used to find all of the matching files in the directory and the files are shown in the files li
Only files are placed in this list; directories are excluded since they are listed separately.

While this process seems straightforward, it can become confusing for users and programmers alike because o
way that the widget parses the filter. For example, consider the following string: /usr/src/motif/lib/Xm. This pathnan
appears to be a common directory path, but in fact, the widget interprets the filter so that the directory
lusr/src/motif/lib and the pattern is Xm. If searched, the directories list will contain all the directories ir
/usr/src/motif/lib and the files list won't contain anything because Xm is a directory, not a pattern that matches ¢
files. Since users frequently make this mistake when using the FileSelectionDialog, you should be sure to explain
operation of the dialog in the documentation for your application.

The convention that the widget follows is to use the last / in the filter to separate the directory part from the patte
part. Fortunately, the FileSelectionDialog provides resources and other mechanisms to retrieve the proper parts of
filter specification. We will demonstrate how to use these mechanisms in the next few subsections.

155

7 Selection Dialogs 7.5.1 Creating a FileSelectionDialog

7.5.1 Creating a FileSelectionDialog

The convenience function for creating a FileSelectionDialog is XmCreateFileSelectionDialog(). The

routine is declared in <Xm/FileSB.h>. The function creates a FileSelectionBox widget and its DialogShell parent a
returns the FileSelectionBox. Alternatively, you can create a FileSelectionBox widget using eithe
XmCreateFileSelectionBox() or XtVaCreateWidget() with the widget class specified as
xmFileSelectionBoxWidgetClass. In this case, you could use the widget as part of a larger interface, or put

it in a DialogShell yourself.

the source code demonstrates how a FileSelectionDialog can be created. This program produces the dialog shov
the figure. The intent of the program is to display a single FileSelectionDialog and print the selection that is made. \
will provide a more realistic example shortly. For now, you should notice how little code is actually required to creal
the dialog. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreatelLocalized() is only available in -Motif 1.2; XmStringCreateSimple() is the

cor-re-sponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_ CHARSE’
in -Motif 1.2.

/* show_files.c —— introduce FileSelectionDialog; print the file
* selected by the user.

*/

#include <Xm/FileSB.h>

main(argc, argv)
int argc;
char *argv[];

Widget toplevel, text_w, dialog;
XtAppContext app;
extern void exit(), echo_file();

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

[* Create a simple FileSelectionDialog —— no frills */

dialog = XmCreateFileSelectionDialog (toplevel, "filesb", NULL, 0);
XtAddCallback (dialog, XmNcancelCallback, exit, NULL);
XtAddCallback (dialog, XmNokCallback, echo_file, NULL);
XtManageChild (dialog);

XtAppMainLoop (app);
}

/* callback routine when the user selects OK in the FileSelection
* Dialog. Just print the file name selected.

*/

void

echo_file(widget, client_data, call_data)

Widget widget; /* file selection box */

XtPointer client_data;

XtPointer call_data;

char *filename;

XmFileSelectionBoxCallbackStruct *cbs =
(XmFileSelectionBoxCallbackStruct *) call_data;

156

7 Selection Dialogs 7.5.2 Internal Widgets

if (IXmStringGetLtoR (cbs—>value, XmFONTLIST_DEFAULT_TAG, &filename))
return; /* must have been an internal error */

if (I*filename) { /* nothing typed? */
puts ("No file selected.");
XtFree(filename); /* even " is an allocated byte */
return;

}

printf ("Filename given:
XtFree (filename);

}

The program simply prints the selected file when the user activates the OK button. The user can change the file by
selecting an item from the files list or by typing directly in the selection text entry area. The user can also activate th
dialog by double—clicking on an item in the files list. The FileSelectionDialog itself is very simple to create; most of
the work in the program is done by the callback routine for the OK button.

7.5.2 Internal Widgets

A FileSelectionDialog is made up of a number of subwidgets, including Text, List, and PushButton widgets. You c:
get the handles to these children using the routine XmFileSelectionBoxGetChild(), which takes the
following form:

Widget
XmFileSelectionBoxGetChild(widget, child)
XmFileSelectionBox widget;
unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the follow
values:

XmDIALOG_APPLY_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_DIR_LIST_LABEL
XmDIALOG_FILTER_LABEL
XmDIALOG_FILTER_TEXT
XmDIALOG_HELP_BUTTON
XmDIALOG_LIST
XmDIALOG_LIST_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_SEPARATOR
XmDIALOG_TEXT
XmDIALOG_WORK_AREA

The values refer to the different widgets in a FileSelectionDialog and they should be self-explanatory, with the
exception of XmDIALOG_WORK_AREA. A FileSelectionDialog can manage a work area child; this value returns th
work area child. You can customize the operation of a FileSelectionDialog by adding a work area that contains othe
components. For a detailed discussion of this technique, see Chapter 7, Custom Dialogs.

When you use XmFileSelectionBoxGetChild(), you should not assume that the returned widget is of any
particular class, so you should treat it as an opaque object as much as possible. Getting the children c

157

7 Selection Dialogs 7.5.3 Callback Routines

FileSelectionDialog is not necessary in most cases because the Motif toolkit provides FileSelectionDialog resourt
that access most of the important resources of the children. You should only get handles to the children if you nee
change resources that are not involved in the file selection mechanisms.

7.5.3 Callback Routines

The XmNokCallback, XmNcancelCallback, XmNapplyCallback, XmNhelpCallback, and
XmNnoMatchCallback callbacks can be specified for a FileSelectionDialog as they are for SelectionDialog. The
callback routines take the usual parameters, but the callback structure passed in the call_data parameter is of type
XmFileSelectionBoxCallbackStruct. The structure is declared as follows:

typedef struct {

int reason;
XEvent *event;
XmString value;

int length;
XmString mask;

int mask_length;
XmString dir;

int dir_length;
XmString pattern;
int pattern_length;
} XmFileSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback routine was invoked. The
possible values are the same as those for a SelectionDialog:

XmCR_OK
XmCR_APPLY
XmCR_CANCEL
XmCR_HELP
XmCR_NO_MATCH

The value field contains the item that the user selected from the files list or typed into the selection text entry area.
The value corresponds to the XmNdirSpec resource and it does not necessarily have to match an item in the
directories or files lists. The mask field corresponds to the XmNdirMask resource; it represents a combination of the
entire pathname specification in the filter. The dir and pattern fields represent the two components that make up
the mask. All of these fields are compound strings; they can be converted to character strings using
XmStringGetLtoR().

7.5.4 File Searching

You can force a FileSelectionDialog to reinitialize the directory and file lists by calling
XmFileSelectionDoSearch(). This routine reads the directory filter and scans the -specified directory, which
is useful if you set the mask directly. The function takes the following form:

void

XmFileSelectionDoSearch(widget, dirmask)
XmFileSelectionBoxWidget widget;
XmString dirmask;

When the routine is called, the widget invokes its directory search procedure and sets the text in the filter text entry

area to the dirmask parameter. Calling XmFileSelectionDoSearch() has the same effect as setting the filter
and selecting the Filter button.

158

7 Selection Dialogs 7.5.3 Callback Routines

By default, the FileSelectionDialog searches the directory specified in the mask according to its internal searchi
algorithm. You can replace this file searching procedure with your own routine by specifying a callback routine fc
the XmNfileSearchProc resource. This resource is not a callback list, so you do not install it by calling
XtAddCallback(). Since the resource is just a single procedure, you specify it as a value like you would any other
resource, as shown in the following code fragment:

extern void my_search_proc();

XtVaSetValues (file_selection_dialog,
XmNfileSearchProc, my_search_proc,
NULL);

If you specify a search procedure, it is used to generate the list of filenames for the files list. A file search routine tal
the following form:

void

(* XmSearchProc) (widget, search_data)
Widget widget;
XtPointer *search_data;

The widget parameter is the actual FileSelectionBox widget and search_data is a callback structure of type
XmFileSelectionBoxCallbackStruct. This structure is just like the one used in the callback routines

discussed in the previous section. Do not be concerned with the value of the reason field in this situation because
none of the routines along the way use the value. The search function should scan the directory specified by the dir
field of the search_data parameter. The pattern should be used to filter the files within the directory. You can

get the complete filter from the mask field.

After the search procedure has determined the new list of files that it is going to use, it must set tf
XmNfileListitems and XmNfileListitemCount resources to store the list into the List widget used by the
FileSelectionDialog. The routine must also set the XmN-listUpdated resource to True to indicate that it has
indeed done something, whether or not any files are found. The function can also set the XmNdirSpec resource
reflect the full file specification in the selection text entry area, so that if the user selects the OK button, the specifi
file is used. Although this step is optional, we recommend doing it in case the old value is no longer valid.

To understand why it may be necessary to have your own file search procedure, consider how you would customi:
FileSelectionDialog so that it only displays the writable files in an arbitrary directory. This customization might com
in handy for a save operation in an electronic mail application, where the user invokes a Save action that display
FileSelectionDialog that lists the files in which the user can save messages. Files that are not writable should no
displayed in the dialog. the source code shows an example of how a file search procedure can be used to impler
this type of dialog. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the

corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET i
Motif 1.2.

/* file_sel.c —— file selection dialog displays a list of all the writable

* files in the directory described by the XmNmask of the dialog.

* This program demonstrates how to use the XmNfileSearchProc for
* file selection dialog widgets.

*/

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/FileSB.h>

#include <Xm/DialogS.h>

#include <Xm/PushBG.h>

159

7 Selection Dialogs

#include <Xm/PushB.h>
#include <X11/Xos.h>
#include <sys/stat.h>

void do_search(), new_file_cb();

/* routine to determine if a file is accessible, a directory,
* or writable. Return —1 on all errors or if the file is not
* writable. Return O if it's a directory or 1 if it's a plain
* writable file.

*/

int

is_writable(file)

char *file;

{

struct stat s_buf;

[* if file can't be accessed (via stat()) return. */
if (stat (file, &s_buf) == -1)
return =1;
else if ((s_buf.st_ mode & S_IFMT) == S_IFDIR)
return O; /* a directory */
else if (!I(s_buf.st_mode & S_IFREG) || access (file, W_OK) == -1)
/* not a normal file or it is not writable */
return —-1;
[* legitimate file */
return 1;

}

/* main() —— create a FileSelectionDialog */
main(argc, argv)

int argc;

char *argv[];

Widget toplevel, dialog;
XtAppContext app;
extern void exit();

Arg argsl[5];

intn=0;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos",
NULL, 0, &argc, argv, NULL, NULL);

XtSetArg (args[n], XmNfileSearchProc, do_search); n++;
dialog = XmCreateFileSelectionDialog (toplevel, "Files", args, n);
XtSetSensitive (
XmFileSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
[* if user presses OK button, call new_file_cb() */
XtAddCallback (dialog, XmNokCallback, new_file_cb, NULL);
[* if user presses Cancel button, exit program */
XtAddCallback (dialog, XmNcancelCallback, exit, NULL);

XtManageChild (dialog);

XtAppMainLoop (app);
}

/* a new file was selected —— check to see if it's readable and not
* a directory. Ifit's not readable, report an error. Ifit's a

7.5.3 Callback Routines

160

7 Selection Dialogs

* directory, scan it just as tho the user had typed it in the mask
* Text field and selected "Search".
*/
void
new_file_cb(widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;
{
char *file;
XmFileSelectionBoxCallbackStruct *cbs =
(XmFileSelectionBoxCallbackStruct *) call_data;

[* get the string typed in the text field in char * format */
if (IXmStringGetLtoR (cbs—>value, XmFONTLIST_DEFAULT_TAG, &file))
return;
if (*file 1="7") {
/* if it's not a directory, determine the full pathname
* of the selection by concatenating it to the "dir" part
*/
char *dir, *newfile;
if (XmStringGetLtoR (cbs—>dir, XmFONTLIST_DEFAULT_TAG, &dir)) {
newfile = XtMalloc (strlen (dir) + 1 + strlen (file) + 1);
sprintf (newfile, "%s/%s", dir, file);
XtFree(file);
XtFree (dir);

file = newfile;
}
}
switch (is_writable (file)) {
casel:
puts (file); /* or do anything you want */
break;
case 0:{
[* a directory was selected, scan it */
XmString str = XmStringCreateLocalized (file);
XmFileSelectionDoSearch (widget, str);
XmStringFree (str);
break;
}
case -1:

[* a system error on this file */
perror (file);

}
XtFree (file);
}

/* do_search() —— scan a directory and report only those files that
* are writable. Here, we let the shell expand the (possible)
* wildcards and return a directory listing by using popen().
* A *real* application should —not- do this; it should use the
* system's directory routines: opendir(), readdir() and closedir().
*/
void
do_search(widget, search_data)
Widget widget; /* file selection box widget */
XtPointer search_data;
{
char *mask, buf[BUFSIZ], *p;
XmString names[256]; /* maximum of 256 files in dir */
int i=0;

7.5.3 Callback Routines

161

7 Selection Dialogs 7.5.3 Callback Routines

FILE “pp, *popen();
XmFileSelectionBoxCallbackStruct *cbs =
(XmFileSelectionBoxCallbackStruct *) search_data;

if (IXmStringGetLtoR (cbs—>mask, XmFONTLIST_DEFAULT_TAG, &mask))
return; /* can't do anything */

sprintf (buf, "/bin/ls %s", mask);
XtFree (mask);
[* let the shell read the directory and expand the filenames */
if ({(pp = popen (buf, "r")))
return;
[* read output from popen() —- this will be the list of files */
while (fgets (buf, sizeof buf, pp)) {
if (p = index (buf, '0))
*p =0;
/* only list files that are writable and not directories */
if (is_writable (buf) == 1 &&
(names[i] = XmStringCreatelLocalized (buf)))
i++;
}
pclose (pp);
if () {
XtVaSetValues (widget,
XmNfileListltems, names,
XmNfileListltemCount, i,
XmNdirSpec, names[0],
XmNlistUpdated, True,
NULL);
while (i > 0)
XmStringFree (names[—-i]);
} else
XtVaSetValues (widget,
XmNfileListltems, NULL,
XmNfileListitemCount, O,
XmNlistUpdated, True,
NULL);

}

The program simply displays a FileSelectionDialog that only lists the files that are writable by the user. The
directories listed may or may not be writable. We are not testing that case here as it is handled by another routine tl
deals specifically with directories, which are discussed in the next section. The XmNfileSearchProc is set to
do_search(), which is our own routine that creates the list of files for the files List widget. The function calls
is_writable() to determine if a file is accessible and if it is a directory or a regular file that is writable.

The callback routine for the OK button is set to new_file_cb() through the XmNokCallback resource. This
routine is called when a new file is selected in from the files list or new text is entered in the selection text entry ar
and the OK button is pressed. The specified file is evaluated using is_writable() and acted on accordingly. If it

is a directory, the directory is scanned as if it had been entered in the filter text entry area. If the file cannot be read
error message is printed. Otherwise, the file is a legitimate selection and, for demonstration purposes, the filenam
printed to stdout.

Obviously, a real application would do something more appropriate in each case; errors would be reported us
ErrorDialogs and legitimate values would be used by the application. An example of such a program is given
Chapter 14, Text Widgets, as file_browser.c. This program is an extension of the source code that takes a m
realistic approach to using a FileSelectionDialog. Of course, the intent of that program is to show how Text widge
work, but its use of dialogs is consistent with the approach we are taking here. The FileSelectionDialog also provic

162

7 Selection Dialogs 7.5.3 Callback Routines

a directory searching function that is analogous to the file searching function. While file searching may be necess
for some applications, it is less likely that customized directory searching will be as useful, since the default acti
taken by the toolkit should cover all common usages. However, since it is impossible to second—guess t
requirements of all applications, Motif allows you to specify a directory searching function through the
XmNdirSearchProc resource.

The procedure is used to create the list of directories. The method used by the procedure is virtually identical to
one used for files, except that the routine must set different resources. The routine must set the XmNdirListltems
and XmNdirListltemCount resources to store the list of directories in the List widget. The value for
XmNlistUpdated must be set just as it was for the file selection routine and XmNdirectoryValid must also be

set to either True or False. If the directory cannot be read, XmNdirectoryValid is set to False to prevent the
XmNfileSearchProc from being called. In this way, the file searching procedure is protected from getting invalid
directories from the directory searching procedure. In order to fully customize the directory and file searchin
functions in a FileSelectionDialog, it is important to understand exactly how the dialog works. This material i
advanced and is intended for programmers who need to write advanced file and/or directory searching routines. W
the user or the application invokes a directory search, the FileSelectionDialog performs the following tasks:

» The List widgets are unmapped to give the user immediate feedback that something is happening. So, if a fi
and/or directory search takes a long time, the user has a visual cue that the application is not waiting for inp

« All of the items are deleted from the List widgets.

» The widget calls its qualify search procedure to construct a proper directory mask, base directory, and file
search pattern based on the text in the filter text entry area. The procedure creates a callback structure of ty
XmFileSelectionBoxCallbackStruct for use by the directory and file search routines.

» The XmNdirSearchProc function is called with the callback structure constructed by the qualify search
procedure. The directory search routine checks to be sure that it can search the specified directory and if it
can, it creates the list of directories for the dialog. If the directory cannot be searched, the routine sets
XmNdirectoryValid to False.

» The XmNfileSearchProc function is called if XmNdirectoryValid has been set to True. This
routine creates the list of files for the dialog. If XmNdirectoryValid has been set to False, the file list
remains empty.

Just as for the directory and file search routines, you can write your own qualify search procedure and install it as tt
value for the XmNqualifySearchProc resource. The routine takes the following form:

void

(* XmQualifyProc) (widget, input_data, output_data)
Widget widget;
XtPointer *input_data;
XtPointer *output_data;

The widget parameter is the actual FileSelectionBox widget; input_data and output_data are callback
structures of type XmFileSelectionBoxCallbackStruct. input_data contains the directory information

that needs to be qualified. The routine uses this information to fill in the output_data callback structure that is
then passed to the directory and file search procedures.

The XmNfileTypeMask resource indicates the types of files for which a particular search routine should be
looking. The resource can be set to one of the following values:

XmFILE_REGULAR
XmFILE_DIRECTORY
XmFILE_ANY_TYPE

163

7 Selection Dialogs 7.6 Summary

If you are using the same routine for both the XmNdirSearchProc and the XmNfileSearchProc, you can
guery this resource to determine the type of file to search for.

7.6 Summary

This chapter described the different types of selection dialogs provided by the Motif toolkit. These dialogs impleme
some common functionality that is needed by many different applications. This chapter builds on the material
Chapter 5, Introduction to Dialogs, which introduced the concept of dialogs and discussed the basic mechanisms tl
implement them. While the dialogs are designed to be used as single—-entity abstractions, they can be customize
provide additional functionality as necessary. We describe how to customize the dialogs and how to create your c
dialogs in Chapter 7, Custom Dialogs.

164

8 Custom Dialogs

This chapter describes how to create new types of dialogs, either by customizing Motif dialogs or by creating entire
new dialogs.

In this chapter we examine methods for creating your own dialogs. The need for such dialogs exists when the
provided by Motif are too limited in functionality or are not specialized enough for your application. Sometimes it i
not clear when you need to create your own dialog. In some situations, you may find that a Motif dialog would be jt
fine if only they did this one little thing. Fortunately, you can often make small adjustments to a predefined Mot
dialog, rather than building an entirely new dialog box from scratch.

There are some issues to consider before you decide how you want to approach the problem of developing cus
dialogs. For example, do you want to use your own widget layout or is the layout of one of the predefined dialo
sufficient? Do you have specialized user—-interface appearance and functionality needs that go beyond wha
provided by Motif? The answers to these questions affect the design of your dialogs. The discussion and examj
provided in this chapter address both scenarios. We provide information on how to create dialogs that are based ol
predefined Motif dialogs, as well as how to design completely new dialogs.

Before we get started, we should mention that creating your own dialogs makes heavy use of manager widgets, ¢
as the Form, BulletinBoard, RowColumn, and PanedWindow widgets. While we use and describe the mana
widgets in context, you may want to consult Chapter 8, Manager Widgets, for specific details about these widgets.

8.1 Modifying Motif Dialogs

We begin by discussing the simpler case of modifying existing Motif dialogs. In Chapter 5, Introduction to Dialogs,
we showed you how to modify a dialog to some extent by changing the default labels on the buttons in the action &
or by unmanaging or desensitizing certain components in the dialog. What we did not mention is that you can also
new components to a dialog box to expand its functionality. All of the predefined Motif dialog widgets let you ad
children. In this sense, you can treat a dialog as a manager widget. In Motif 1.1, you can only add a single work ar
child to a Motif dialog, which limits the amount of customization that is possible. Motif 1.2 allows you to add multiple
children to an existing dialog, so you can provide additional controls, action area buttons, and even a MenuBar.

8.1.1 Modifying MessageDialogs

At the end of Chapter 5, Introduction to Dialogs, we described a scenario where an application might want to hax
more than three action area buttons in a MessageDialog. If the user has selected the Quit button in a text editor but
not saved her changes, an application might want to post a dialog that asks about saving the changes before ex
The user could want to save the changes and exit, not save the changes and exit anyway, cancel the exit operatic
get help.

In Motif 1.1, the MessageDialog only supported three action area buttons, so creating a dialog with four butto
required designing a custom dialog. However, in Motif 1.2, the MessageDialog allows you to provide addition:
action area buttons. the source code demonstrates how to create a QuestionDialog with four action area buttons.
example uses functionality that is new in Motif 1.2, so it only works with the 1.2 version of the Motif toolkit.

/* question.c —— create a QuestionDialog with four action buttons

*
/
#include <Xm/MessageB.h>

165

8 Custom Dialogs

#include <Xm/PushB.h>

main(argc, argv)
int argc;
char *argv[];

}

XtAppContext app;
Widget toplevel, pb;
extern void pushed();

toplevel = XtVaApplnitialize (&app, "Demos"”, NULL, O,
&argc, argv, NULL, NULL);

pb = XtVaCreateManagedWidget ("Button",
xmPushButtonWidgetClass, toplevel, NULL);

XtAddCallback (pb, XmNactivateCallback, pushed, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

void

pushed(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

{

}

Widget dialog, no_button;
extern void dlg_callback();
Arg argsl[5];
intn=0;
XmString m = XmStringCreateLocalized
("Do you want to update your changes?");
XmString yes = XmStringCreateLocalized ("Yes");
XmString no = XmStringCreateLocalized ("No");

XtSetArg (args[n], XmNautoUnmanage, False); n++;

XtSetArg (args[n], XmNmessageString, m); n++;

XtSetArg (args[n], XmNokLabelString, yes); n++;

dialog = XmCreateQuestionDialog (w, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, dig_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNhelpCallback, dig_callback, NULL);
XmStringFree (m);

XmStringFree (yes);

no_button = XtVaCreateManagedWidget ("no",
xmPushButtonWidgetClass, dialog,
XmNlabelString, no,
NULL);

XtAddCallback (no_button, XmNactivateCallback, dig_callback, NULL);

XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

void

dig_callback(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

{

8 Custom Dialogs

166

8 Custom Dialogs 8 Custom Dialogs

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs—>reason) {
case XmMCR_OK :
case XmMCR_CANCEL :
XtPopdown (XtParent (w));
break;
case XmMCR_ACTIVATE :
XtPopdown (XtParent (XtParent (w)));
break;
case XmMCR_HELP :
puts ("Help selected");
}

}

The dialog box from the program is shown in the figure.

=| notice_popup

Do you want ba npdate your changeas?

Yes | No Cancel Help

Output of question.c

The extra button is added to the dialog by creating a PushButton as a child of the dialog. We are treating
MessageDialog just like any other manager widget. The MessageDialog inserts any additional PushButton childi
into the action area after the OK button, which is why we added a No button. If you add more than one button, th
are all put after the OK button, in the order that you create them. We have also changed the label of the OK button
that it is now the Yes button.

Since the No button is not part of the standard MessageDialog, we have to set the callback routine on
XmNactivateCallback. For the rest of the buttons, we use the callbacks defined by the dialog. The dialog
callback routine, dlg_callback(), has to handle the various callbacks in different ways. By checking the
reason field of the callback structure, the routine can determine which button was selected. For the Yes and Canct
buttons, the routine unposts the dialog by popping down the DialogShell parent of the dialog. For the No button,
need to be a bit more careful about popping down the right widget. Since the widget in this case is the PushButtor
we need to call XtParent() twice to get the DialogShell.

With Motif 1.2, the MessageDialog also supports the addition of other children besides PushButtons. If you adc
MenuBar child, it is placed across the top of the dialog, although it is not clear why you would want a MenuBar in
MessageDialog. Any other type of widget child is considered the work area. The work area is placed below t
message text if it exists. If there is a symbol, but no message, the work area is placed to the right of the symbol.
MessageDialog only supports the addition of one work area; the layout of multiple work area children is undefined.
Motif 1.1, only a single work area child can be added to a MessageDialog. This child is always placed below tl
message text.

167

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

The XmNdialogType resource can take the value XmDIALOG_TEMPLATE in Motif 1.2. This value creates a
TemplateDialog, which is basically an empty MessageDialog that can be modified by the programmer. By default, t
dialog only contains a Separator child. By setting various resources on a TemplateDialog when it is created, you
cause the dialog to create other standard children. If you set a string or callback resource for an action area button
button is created. If you set the XmNmessageString resource, the message is displayed in the standard location. |
you set the XmNsymbolPixmap resource, the specified symbol appears in its normal location. If you don't set ¢
particular resource, then that child is not created, which means that you cannot modify the resource later w
XtSetValues(), set a callback for the child with XtAddCallback(), or retrieve the child with
XmMessageBoxGetChild().

8.1.2 Modifying SelectionDialogs

The Motif SelectionDialog supports the same types of modifications as the MessageDialog. With Motif 1.2, you c:
provide additional action area buttons, a work area child, and a MenuBar. Unlike the MessageDialog, the first widc
that is added is taken as the work area, regardless of whether it is a PushButton or a MenuBar. The fact that the
child is always considered the work area is a bug. As a result of the bug, you need to be careful about the orde
which you add children to a SelectionDialog. If you want to add a PushButton to the action area of a SelectionDialc
you need to add an unmanaged work area widget first, so that the PushButton is placed in the action area, rather
used as the work area. After you add a work area, if you add a MenuBar, it is placed along the top of the dialog, :
PushButton children are inserted after the OK button. The position of the work area child is controlled by th
XmNchildPlacement resource, which can take the following values:

XmPLACE_ABOVE_SELECTION
XmPLACE_BELOW_SELECTION
XmPLACE_TOP

The SelectionDialog only supports the addition of one work area; the layout of multiple work area children is
undefined. In Motif 1.1, only a single work area child can be added to a SelectionDialog. This child is always placed
between the list and the text entry area.

Consider providing additional controls in a PromptDialog like the one used in the program prompt_dlg fron
Chapter 6, Selection Dialogs. In this program, the dialog prompts the user for a new label for the PushButton th
activated the dialog. By adding another widget to the dialog, we can expand its functionality to prompt for either
label name or a button color. The user enters either value in the same text input area and the RadioBox controls
the text is evaluated. the source code shows the new program. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreatelLocalized() is only available in -Motif

1.2; XmStringCreateSimple() is the corresponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in -Motif 1.2.

/* modify_btn.c —— demonstrate how a default Motif dialog can be
* modified to support additional items that extend the usability

* of the dialog itself. This is a modification of the prompt_dlg.c

* program.

*/

#include <Xm/SelectioB.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

main(argc, argv)
char *argv[];

XtAppContext app;

Widget toplevel, rc, button;
void pushed();

168

8 Custom Dialogs

XtSetLanguageProc (NULL, NULL, NULL);

/* Initialize toolkit and create toplevel shell */
toplevel = XtVaApplnitialize (&app, "Demos", NULL, O,
&argc, argv, NULL, NULL);

/* RowColumn managed both PushButtons */

rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

[* Create two pushbuttons —— both have the same callback */

button = XtVaCreateManagedWidget ("PushMe 1",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

button = XtVaCreateManagedWidget ("PushMe 2",
xmPushButtonWidgetClass, rc, NULL);

XtAddCallback (button, XmNactivateCallback, pushed, NULL);

XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() ——the callback routine for the main app's pushbuttons.
* Create a dialog that prompts for a new button name or color.
* A RadioBox is attached to the dialog. Which button is selected
*in this box is held as an int (0 or 1) in the XmNuserData resource
* of the dialog itself. This value is changed when selecting either
* of the buttons in the ToggleBox and is queried in the dialog's
* XmNokCallback function.
*/
void
pushed(pb, client_data, call_data)
Widget pb;
XtPointer client_data;
XtPointer call_data;
{
Widget dialog, toggle_box;
XmString t, btn1, btn2;
extern void read_name(), toggle_callback();
Arg argsl[5];
intn=0;

[* Create the dialog —- the PushButton acts as the DialogShell's

* parent (not the parent of the PromptDialog). The "userData"

* is used to store the value

*/

t = XmStringCreatelLocalized ("Enter New Button Name:");
XtSetArg (args[n], XmNselectionLabelString, t); n++;

XtSetArg (args[n], XmNautoUnmanage, False); n++;

XtSetArg (args[n], XmNuserData, 0); n++;

dialog = XmCreatePromptDialog (pb, "notice_popup", args, n);
XmStringFree (t); /* always destroy compound strings when done */

[* When the user types the name, call read_name() ... */
XtAddCallback (dialog, XmNokCallback, read_name, pb);

[* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, XtDestroyWidget, NULL);

/* No help is available... */

8.1.2 Modifying SelectionDialogs

169

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

XtUnmanageChild (XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));

[* Create a toggle box —— callback routine is toggle_callback() */

btnl = XmStringCreateLocalized ("Change Name");

btn2 = XmStringCreateLocalized ("Change Color");

toggle_box = XmVaCreateSimpleRadioBox (dialog,
“radio_box", 0 /* inital value */, toggle_callback,
XmVaRADIOBUTTON, btn1, 0, NULL, NULL,
XmVaRADIOBUTTON, btn2, 0, NULL, NULL,
NULL);

XtManageChild (toggle_box);

XtManageChild (dialog);
XtPopup (XtParent (dialog), XtGrabNone);

}

/* callback for the items in the toggle box —— the "client data" is
* the item number selected. Since the function gets called whenever
* either of the buttons changes from true to false or back again,
* it will always be called in pairs —— ignore the "False" settings.
* When cbs—>set is true, set the dialog's label string accordingly.
*/
void
toggle_callback(toggle_box, client_data, call_data)
Widget toggle_box;
XtPointer client_data;
XtPointer call_data;
{
Widget dialog = XtParent(XtParent(toggle_box));
XmString str;
int n = (int) client_data;
XmToggleButtonCallbackStruct *cbs =
(XmToggleButtonCallbackStruct *) call_data;

if (cbs—>set == False)
return; /* wait for the one that toggles "on" */

if (n ==0)
str = XmStringCreatelLocalized ("Enter New Button Name:");
else

str = XmStringCreateLocalized ("Enter Text Color:");
XtVaSetValues (dialog,
XmNselectionLabelString, str,
XmNuserData, n, /* reset the user data to reflect new value */
NULL);
XmStringFree (str);
}

/* read_name() ——the text field has been filled in. Get the userData
* from the dialog widget and set the PushButton's name or color.
*/
void
read_name(dialog, client_data, call_data)
Widget dialog;
XtPointer client_data;
XtPointer call_data;
{
char *text;
int n;
Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs =
(XmSelectionBoxCallbackStruct *) call_data;

170

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

/* userData: n == 0 —> Button Label, n == 1 —> Button Color */
XtVaGetValues (dialog, XmNuserData, &n, NULL);

if (n==0)
XtVaSetValues (push_button, XmNlabelString, cbs—>value, NULL);
else {
/* convert compound string into regular text string */
XmStringGetLtoR (cbs—>value, XmFONTLIST_DEFAULT_TAG, &text);
XtVaSetValues (push_button,
XtVaTypedArg, XmNforeground,
XmRString, text, strlen (text) + 1,
NULL);
XtFree (text); /* must free text gotten from XmStringGetLtoR() */
}
}

The new dialog is shown in the figure.

S SS— —

S (L1 L
[Puchio 1]

Pushhc 2|
]

——
—| nulice_pupup_pupup

+ Change Name

4 Change Color

Enler Texl Calar:
wkite

OK | Cancsl

Output of modify_btn.c

We add a RadioBox as the work area child of the PromptDialog. The ToggleButtons in the RadioBox indicate whett
the input text is supposed to change the label of the PushButton or its text color. To determine which of the
attributes to change, we use the callback routine toggle callback().

Rather than storing the state of the RadioBox in a global variable, we store the value in the XmNuserData resourc
of the dialog widget. Using this technique, we can retrieve the value anytime we wish and minimize the number
global variables in the program. The XmNuserData resource is available for all Motif widgets except shells, so it is
a convenient storage area for arbitrary values. The type of value that XmNuserData takes is any type whose size
less than or equal to the size of an XtPointer, which is typically defined as a char pointer. As a result, storing an
int works just fine. If you want to store a data -structure in this resource, you need to store a pointer to the structur
The size or type of the structure is irrelevant, since pointers are the same size. You might run into problems w
unusual architectures where pointers of different types are not the same size, like DOS.

171

8 Custom Dialogs 8.2 Designing New Dialogs

When the user enters new text and presses RETURN or activates the OK button, read_name() is called. This
callback routine gets the XmNuserData from the dialog widget. If the value is 0, the label of the PushButton is rese
using the XmNlabelString resource. Since the callback routine provides the text in compound string format, it is
already in the correct format for the label. If the XmNuserData is 1, then the text describes a color name for the
PushButton.

Rather than converting the string into a color explicitly, we use the XtVaTypedArg feature of XtVaSetValues()

to do the conversion for us. This feature converts a value to the format needed by the specified resource. -
XmNforeground resource takes a variable of type Pixel as a value. The conversion works provided there is an
underlying conversion function to support it. For more information on conversion functions, how to write them, o
how to install your own, see Volume Four, X Toolkit Intrinsics Programming Manual. Motif does not supply a
conversion function to change a compound string into a Pixel value, but there is one for converting a C string into ¢
Pixel. We convert the compound string into a C string using XmStringGetLtoR() and then set the foreground
color as follows:

XtVaSetValues (push_button,
XtVaTypedArg, XmNforeground,
XmRString, text, strlen (text) + 1,
NULL);

The amount of customization that is possible with the predefined Motif dialogs varies greatly between Motif 1.1 ar
Motif 1.2. We've described the possibilities for both MessageDialogs and SelectionDialogs using the two versions
the toolkit. If the layouts that are possible do not meet your needs, you should consider building your own dialo
from scratch.

8.2 Designing New Dialogs

In this section, we introduce the methods for building a dialog entirely from scratch. To create a new dialog, you ne
to follow basically the same steps that are used by the Motif convenience routines, which we described in Sect
#sdlgconv. We've modified the list a bit to reflect the flexibility that you have in controlling the kind of dialog that
you make. Here are the steps that you need to follow:

* Choose a shell widget that best fits the needs of your dialog. You may continue to use a DialogShell if you
like.

* Choose an appropriate manager widget to control the layout of the components of the dialog. This manager
a child of the shell widget. The manager widget you choose greatly affects how the dialog is laid out. You dc
not have to use a BulletinBoard or Form widget, but you can if you like. If you do want to use a DialogShell
with either a Form or a BulletinBoard widget as the manager, you can use one of the Motif convenience
routines: XmCreateBulletinBoardDialog() or XmCreateFormDialog(). These routines give
you a starting point for creating a custom dialog. However, in this chapter, we create each of the widgets
explicitly, so that you have a complete sense of what goes into a dialog.

* Create the control area, which may include any of the Motif primitive or manager widgets. This step is the or
that gives you the most flexibility, as you have complete control over the contents and layout of the control
area.

» Create an action area with PushButtons such as OK, Cancel, and Help. Since you are creating the control
area yourself, you cannot use XmNokCallback and the other resources specific to the predefined Motif
dialogs. Instead, you use the callback resources appropriate for the widgets that you use in the dialog.

* Pop up the shell created in the first step.

172

8 Custom Dialogs 8.2.1 The Shell

8.2.1 The Shell

In Chapter 4, The Main Window, we demonstrated the purpose of a main window in an application and the kinds
widgets that you use in a top-level window. Dialog boxes, as introduced in Chapter 5, Introduction to Dialogs, ar
thought of as transient windows that act as satellites to a top—level shell. A transient dialog should use a DialogS|
widget. However, not all dialogs are transient. A dialog may act as a secondary application window that remains
display for an extended period of time. This usage is especially common in large applications. The MainWindo
widget can even be used in a dialog box. For dialogs of this type, you may want to use a TopLevelShell or
ApplicationShell.

Choosing the appropriate shell widget for a dialog depends on the activities carried out in the dialog, so it is diffict
to provide rules or even heuristics to guide you in your choice. As discussed in Chapter 5, a DialogShell cannot
iconified, it is always placed on top of the shell widget that owns the parent of the dialog, and it is always destroyed
withdrawn from the screen if its parent is destroyed or withdrawn. These three characteristics may influence yc
decision to use a DialogShell. An ApplicationShell or a TopLevelShell, on the other hand, is always independent
other windows, so you can change its stacking order, iconify it separately, and not worry about it being withdrav
because of another widget. The main difference between an ApplicationShell and a TopLevelShell is that

ApplicationShell is designed to start a completely new widget tree, as if it were a completely separate application. I
recommended that an application only have one ApplicationShell.

For some applications, you may want a shell with characteristics of several of the available shell classe
Unfortunately, it is difficult to intermix the capabilities of a DialogShell with those of an ApplicationShell or a
TopLevelShell because it involves doing quite a bit of intricate window manager interaction. Having ultimate contre
over the activities of a shell widget requires setting up a number of event handlers on the shell and monitoring cert
window property event state changes. Aside from being very complicated, you run the risk of breaking Mot
compliance. See Chapter 16, Interacting With the Window Manager, for details on how you might handle thi
situation.

Once you have chosen the shell widget that you want to use, you need to decide how to create it. A DialogShell cal
created using XtCreatePopupShell(), XtVaCreatePopupShell(), or the Motif convenience routine,
XmCreateDialogShell(). An ApplicationShell or a TopLevelShell can be created using either of the popup

shell routines, XtAppCreateShell() or XtVaAppCreateShell(). The difference between the two types of

routines involves whether the newly—created shell is treated like a popup shell or as a more permanent window on
desktop. If you create the shell as a popup shell, you need to select an adequate parent. The parent for a popup
must be an initialized and realized widget. It can be any kind of widget, but it may not be a gadget because the pa
must have a window. A dialog that uses a popup shell inherits certain attributes from its parent. For example, if 1
parent is insensitive (XmNsensitive is set to False), the entire dialog is insensitive as well.

8.2.2 The Manager Child

The manager widget that you choose for a dialog is the only managed child of the shell widget, which means that
widget must contain both the control area and the action area of the dialog and manage the relationship between tl
Recall that the Motif Style Guide suggests that a dialog be composed of two main areas: the control area and the a
area. Both of these areas extend to the left and right sides of a dialog and are stacked vertically, with the control :
on the top. The action area usually does not fluctuate in size as the shell is resized, while the control area may
resized in any way. the figure illustrates the general layout of a dialog.

173

8 Custom Dialogs 8.2.3 The Control Area

=| Help |

TN This -¢ cortext-sansikt-ve
i a2elp. Well, not ceallw, J Control Araa
1) sut zuch help temt coulc (haight may fluctuate)
zasile be ceneratzd by = ’ !

= | ceal help syszem. ALL wcu
.
Action Area
il M {constant height)
N

Layout of a dialog

Motif dialog widgets handle this layout automatically. When you create your own dialog, you are responsible fc
managing the layout. We recommend using the PanedWindow widget as the manager widget for a dialog. T
PanedWindow supports vertically stacked windows, each of which may or may not be resizable, which allows you
create the suggested layout. If you use a PanedWindow as the manager widget for a dialog, it can manage two c
managers that act as the control and action areas. The control area can be resizable, while the action area is nof
PanedWindow also provides a separator between the panes, which fulfills the Style Guide recommendation that tl
be a Separator widget between the control and action areas.

Of course you can use whatever manager widget you like for a dialog. If you use a BulletinBoard or a Form widg
you may be able to take advantage of the special interaction these widgets have with a DialogShell. The RowColu
widget can also lay out its children vertically, so you could use one to manage the control and action areas of a dia
The difficulty with using a RowColumn involves resizing, in that there is no way to tell the widget to keep the bottor
partition a constant height while allowing the top to fluctuate as necessary. The same problem can also arise v
other manager widgets, so you need to be sure that the resizing behavior is appropriate.

8.2.3 The Control Area

The control area of a dialog box contains the widgets that provide the functionality of the dialog, such as Labe
ToggleButtons, and List widgets. Creating the control area of a dialog is entirely application—-defined. You can u
any of the Motif primitive and manager widgets in the control area to implement the functionality of the dialog. Th
ability to design your own control area is the main reason to create your own dialog as opposed to using one of
predefined Motif dialogs.

8.2.4 The Action Area

The action area of a dialog contains PushButtons whose callback routines actually perform the action of the dia
box. Constructing the action area for a dialog involves specifying labels and callback routines for the buttons a
determining the best way to get information from the control area of the dialog. The Motif Style Guide defines
number of common dialog box actions. The common actions are designed to provide consistency betweeen diffel
Motif applications. You are not required to use the common actions, but you should consider them before creati
your own arbitrary actions. The button labels and their corresponding actions are shown in the following list.

Yes
Indicates an affirmative response and causes the dialog to be dismissed.
No

174

8 Custom Dialogs 8.2.3 The Control Area

Indicates a negative response and vauses the dialog to be dismissed.

OK
Applies any changes reflected in the control area, performs any related actions, and causes the dialog box t
be dismissed.

Close
Closes the dialog box without performing any action.

Apply
Applies any changes reflected in the control area, performs any related actions, and leaves the dialog open
further interaction.

Retry
Tries the task in progress again. This action is commonly found in dialog boxes that report errors.
Stop
Stops the task in progress at the next possible breaking proint. This action is often found in dialog boxes tha
indicate that the application is "busy."
Pause
Pauses the task in progress. This action is used in combination with Resume.
Resume
Resumes the task in progress. This action is used in combination with Pause.
Reset
Resets the controls in the work area to the values they had at the time the dialog was originally opened.
Cancel
Resets the controls in the work area and causes the dialog to be dismissed.
Help
Provides help for the dialog box.
The following heuristics can help in designing the action area for a dialog box:

« Lay out the action area as a single horizontal row at the bottom of the dialog.

« Set the action area apart from the rest of the dialog using a Separator.

 Use single-word button labels.

» Choose command-style verbs over nouns when possible. Since some words can be interpreted in more tha
one way, be careful to avoid ambiguity.

« Affirmative actions should be placed farthest to the left (in a left-to-right language environment), followed
by negative actions, followed by cancelling actions. For example, Yes should always be placed to the left of
No.

« Help, if available, should always be placed farthest to the right (in a left-to-right language environment).

Depending on your application, you may want to create your own actions and overlook some of these guidelines. th

figure shows a custom dialog from an e—mail application that demonstrates some of the issues involved in designin
an action area.

175

8 Custom Dialogs 8.3 Building a Dialog

Foldur: valB . 16

Mczaagea: I 1z 20, i
AR A TerEecin e "Wassagear

==]

Puar 7 Usze Date Mazeage Zacanza

3m A Fil Moo-Miabd.ee
Tad
12 3 4 5 6 | ™

A

S K Tu W Th

o
n

o Faacui AU Opan Foolure

J Lerborio Jurcisn on lesuls
T B 8 10 1 12 18 Ay

Jan Japy i
M 15 1B 17 I8 18 20 (|2l fsavw p
r\~|-'o U
L ue 2 24 BS 26 27 [|=aq =
ot o
2 20 J0 = O Dade Ouy

45 | = O or Before Dats

= Omoar After Tiate

4 Sae L: Lol ites g
A L Ll o Cae 2 L&D A T

Fowod 3 meszame el vo orallvr Moy 1, 19595

] Liv=a Ani hew 20 1-03pn (7)) o=imaetaw
=N v Lasi % AATSvIn ac e Brw 32 F-f!‘-'-pn (-3 p'l."r'n
20 r bit 3codlcy ¥cv 8 11:2%n (13) firks
7
B .-
Doae Neawch | Cleax I llelp |

A custom dialog

In this dialog, the Help button is the only one with a label recommended by Motif. Since the other common actior
did not effectively represent the actions of the dialog, we chose our own labels. We decided not to use the Can
action because we didn't want to combine the actions of Reset and Close in one button. Instead, we separatec
functionality into two actions. The Clear button resets the controls without closing the window and the Done butto
closes the window. While Cancel, the recommended Motif label, implies that the action specified by the dialog shou
not be taken, Done merely suggests that the dialog be dismissed. Selecting Done does not cancel anything, it
dismisses the dialog. Close might be more appropriate, but since the dialog is part of an electronic mail applicat
where the term "close" is used to describe the action of closing a folder, we are not using that label to avoid ambigu

We do not use the OK action in the dialog because it doesn't work with the desired usage of the dialog. Let's say
user selects a date to search for messages and then presses the OK button to start the search. By definition, OK sl
perform the action and dismiss the dialog. If that were to happen here, the user would never see the results of
search. While Apply might be more appropriate for our desired action, we decided to use Search instead because
more descriptive of the action being taken by the dialog.

8.3 Building a Dialog

Now that we've explained the design process for a dialog, let's create a real dialog and identify each of the steps ir
process. Consider the problem of providing help. While the Motif InformationDialog is adequate for brief hely

176

8 Custom Dialogs 8.3 Building a Dialog

messages, a customized dialog may be more appropriate for displaying large amounts of text. Our custom dig
displays the text in a scrolling region which is capable of handling arbitrarily large amounts of data.

the source code shows a program that uses a main application window as a generic backdrop. The MainWinc
widget contains a MenuBar that has two menus: File and Help. The Help menu contains several items that, wh
selected, pop up a dialog window that displays the associated help text. The text that we provide happens tc
predefined in the program, but you could incorporate information from other sources, such as a database or an exte
file. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreatelLocalized() is only available in -Motif 1.2; XmStringCreateSimple() is the

corresponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSE
in -Motif 1.2.

/* help_text.c:

* Create a simple main window that contains a sample (dummy) work
* area and a menubar. The menubar contains two items: File and Help.
* The items in the Help pulldown call help_cb(), which pops up a

* home—made dialog that displays predefined help texts. The purpose
* of this program is to demonstrate how one might approach the

* problem displaying a large amount of text in a dialog box.

*/

#include <stdio.h>

#include <ctype.h>

#include <Xm/DialogS.h>

#include <Xm/MainW.h>

#include <Xm/RowColumn.h>

#include <Xm/Form.h>

#include <Xm/Text.h>

#include <Xm/PushBG.h>

#include <Xm/LabelG.h>

#include <Xm/PanedW.h>

/* The following help text information is a continuous stream of characters
* that will all be placed in a single ScrolledText object. If a specific
* newline is desired, you must do that yourself. See "index_help" below.
*
String context_help[] = {

"This is context—sensitive help. Well, not really, but such",

"help text could easily be generated by a real help system.",

"All you really need to do is obtain information from the user",

"about the widget from which he needs help, or perhaps prompt",

"for other application—specific contexts.",

NULL

I3

String window_help[] ={
"Each of the windows in your application should have an",
"XmNhelpCallback associated with it so you can monitor when",
"the user presses the Help key over any particular widget.",
"This is another way to provide context-sensitive help.",
"The MenuBar should always have a Help entry at the far right",
"that provides help for most aspects of the program, including",
"the user interface. By providing different levels of help”,
"indexing, you can provide multiple stages of help, making the",
"entire help system easier to use.",
NULL

I3

String index_help[] = {
"This is a small demonstration program, so there is very little",

177

8 Custom Dialogs

"material to provide an index. However, an index should contain",
"a summary of the type of help available. For example, we have:0,
" Help On ContextO,

Help On WindowsO0,

This IndexO,
"0,
"Higher—end applications might also provide a tutorial.",
NULL

I3

String *help_texts[] = {
context_help,
window_help,
index_help

b

main(argc, argv)
int argc;
char *argv[];

XtAppContext app;

Widget toplevel, rc, main_w, menubar, w;
extern void help_ch(), file_ch();

XmString strl, str2, str3;

Widget *cascade_btns;

int num_btns;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaApplnitialize (&app, "Demos", NULL, O,
&argc, argv, NULL, NULL);

/* the main window contains the work area and the menubar */
main_w = XtVaCreateWidget ("main_w",
xmMainWindowWidgetClass, toplevel, NULL);

[* Create a simple MenuBar that contains two cascade buttons */

strl = XmStringCreatelLocalized ("File");

str2 = XmStringCreatelLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "main_w",
XmVaCASCADEBUTTON, strl, 'F,
XmVaCASCADEBUTTON, str2, 'H',
NULL);

XmStringFree (strl);

XmStringFree (str2);

[* create the "File" pulldown menu —- callback is file_cb() */

strl = XmStringCreatelLocalized ("New");

str2 = XmStringCreatelLocalized ("Open");

str3 = XmStringCreateLocalized ("Quit");

XmVacCreateSimplePulldownMenu (menubar, "file_menu", 0O, file_cb,
XmVaPUSHBUTTON, strl, 'N', NULL, NULL,
XmVaPUSHBUTTON, str2, 'O’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, str3, 'Q’, NULL, NULL,
NULL);

XmStringFree (strl);

XmStringFree (str2);

XmStringFree (str3);

[* create the "Help" menu —- callback is help_cb() */

8.3 Building a Dialog

178

8 Custom Dialogs

strl = XmStringCreatelLocalized ("On Context");

str2 = XmStringCreatelLocalized ("On Window");

str3 = XmStringCreatelLocalized ("Index");

w = XmVaCreateSimplePulldownMenu (menubar, "help_menu", 1, help_cb,
XmVaPUSHBUTTON, strl, 'C', NULL, NULL,
XmVaPUSHBUTTON, str2, ‘W', NULL, NULL,
XmVaPUSHBUTTON, str3, 'I', NULL, NULL,
NULL);

XmStringFree (strl);

XmStringFree (str2);

XmStringFree (str3);

[* Identify the Help Menu for the MenuBar */
XtVaGetValues (menubar,
XmNchildren, &cascade_btns,
XmNnumChildren, &num_btns,
NULL);
XtVaSetValues (menubar,
XmNmenuHelpWidget, cascade_btns[num_btns-1],
NULL);
XtManageChild (menubar);

* the work area for the main window —- just create dummy stuff */

rc = XtVaCreateWidget ("rc", xmRowColumnWidgetClass, main_w, NULL);

strl = XmStringCreatelLtoR ("0 This is an EmptyOample Control Area0 ",
XmMFONTLIST_DEFAULT_TAG);

XtVaCreateManagedWidget ("label", xmLabelGadgetClass, rc,
XmNlabelString, strl,
NULL);

XmStringFree (strl);

XtManageChild (rc);

XtManageChild (main_wy);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

/* callback for all the entries in the File pulldown menu. */
void

file_cb(w, client_data, call_data)

Widget w;

XtPointer client_data;

XtPointer call_data;

{

int item_no = (int) client_data;

if (item_no == 2) /* the Quit menu button */
exit (0);
printf ("ltem %d (%s) selectedO, item_no + 1, XtName (w));

}

/* climb widget tree until we get to the top. Return the Shell */
Widget

GetTopShell(w)

Widget w;

while (w && !XtIsWMShell (w))
w = XtParent (w);
return w;

}

8.3 Building a Dialog

179

8 Custom Dialogs

#include "info.xbom" /* bitmap data used by our dialog */

/* callback for all the entries in the Help pulldown menu.
* Create a dialog box that contains control and action areas.

*

void

help_cb(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

{

Widget help_dialog, pane, text_w, form, sep, widget, label;
extern void DestroyShell();

Pixmap pixmap;

Pixel fg, bg;

Arg args[10];

intn=0;

inti;

char *p, buf[BUFSIZ];

int item_no = (int) client_data;

Dimension h;

[* Set up a DialogShell as a popup window. Set the delete

* window protocol response to XmDESTROY to make sure that

* the window goes away appropriately. Otherwise, it's XmUNMAP

* which means it'd be lost forever, since we're not storing

* the widget globally or statically to this function.

*/

help_dialog = XtVaCreatePopupShell ("Help",
xmDialogShellWidgetClass, GetTopShell (w),
XmNdeleteResponse, XmDESTROY,
NULL);

[* Create a PanedWindow to manage the stuff in this dialog. */

pane = XtVaCreateWidget ("pane”, xmPanedWindowWidgetClass, help_dialog,
XmNsashWidth, 1, /* PanedWindow won't let us set these to 0! */
XmNsashHeight, 1, /* Make small so user doesn't try to resize */
NULL);

[* Create a RowColumn in the form for Label and Text widgets.
* This is the control area.
*
form = XtVaCreateWidget (“form1", xmFormWidgetClass, pane, NULL);
XtVaGetValues (form, /* once created, we can get its colors */
XmNforeground, &fg,
XmNbackground, &bg,
NULL);

[* create the pixmap of the appropriate depth using the colors
* that will be used by the parent (form).
*
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),
RootWindowOfScreen (XtScreen (form)),
info_bits, info_width, info_height,
fg, bg, DefaultDepthOfScreen (XtScreen (form)));

[* Create a label gadget using this pixmap */

label = XtVaCreateManagedWidget ("label”, xmLabelGadgetClass, form,
XmNlabelType, XmPIXMAP,
XmNlabelPixmap, pixmap,
XmNleftAttachment, XmATTACH_FORM,

8.3 Building a Dialog

180

8 Custom Dialogs

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

[* prepare the text for display in the ScrolledText object
* we are about to create.
*/
for (p = buf, i = 0; help_texts[item_no][i]; i++) {
p += strlen (strcpy (p, help_texts[item_nol][i]));
if (lisspace (p[-1])) /* spaces, tabs and newlines are spaces.. */
p++ =""; [lines are concatenated together, insert a space */

——p = 0; / get rid of trailing space... */

XtSetArg (args[n], XmNscrollVertical, True); n++;

XtSetArg (args[n], XmNscrollHorizontal, False); n++;

XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;

XtSetArg (args[n], XmNcursorPositionVisible, False); n++;

XtSetArg (args[n], XmNwordWrap, True); n++;

XtSetArg (args[n], XmNvalue, buf); n++;

XtSetArg (args[n], XmNrows, 5); n++;

text_w = XmCreateScrolledText(form, "help_text", args, n);
[* Attachment values must be set on the Text widget's PARENT,
* the ScrolledWindow. This is the object that is positioned.
*
XtVaSetValues (XtParent (text_w),
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);
XtManageChild (text_w);
XtManageChild (form);

[* Create another form to act as the action area for the dialog */
form = XtVaCreateWidget ("form2", xmFormWidgetClass, pane,
XmNfractionBase, 5,
NULL);

[* The OK button is under the pane's separator and is

* attached to the left edge of the form. It spreads from

* position 0 to 1 along the bottom (the form is split into

* 5 separate grids via XmNfractionBase upon creation).

*/

widget = XtVaCreateManagedWidget ("OK",
xmPushButtonGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,

XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtAddCallback (widget, XmNactivateCallback, DestroyShell, help_dialog);

/* This is created with its XmNsensitive resource set to False
* because we don't support "more" help. However, this is the

8.3 Building a Dialog

181

8 Custom Dialogs

* place to attach it to if there were any more.

*/

widget = XtVaCreateManagedWidget ("More",
xmPushButtonGadgetClass, form,
XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XMATTACH_POSITION,
XmNrightPosition, 4,

XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

[* Fix the action area pane to its current height —— never let it resize */

XtManageChild (form);

XtVaGetValues (widget, XmNheight, &h, NULL);

XtVaSetValues (form, XmNpaneMaximum, h, XmNpaneMinimum, h, NULL);

XtManageChild (pane);

XtPopup (help_dialog, XtGrabNone);
}

/* The callback function for the "OK" button. Since this is not a
* predefined Motif dialog, the "widget" parameter is not the dialog
* jitself. That is only done by Motif dialog callbacks. Here in the
* real world, the callback routine is called directly by the widget
* that was invoked. Thus, we must pass the dialog as the client
* data to get its handle. (We could get it using GetTopShell(),

* put this way is quicker, since it's immediately available.)

*/

void

DestroyShell(widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;

{
Widget shell = (Widget) client_data;

XtDestroyWidget(shell);
}

The output of the program is shown in the figure.

8.3 Building a Dialog

182

8 Custom Dialogs 8.3.1 The Shell

| help text | |}
File Help

This is an Empty
| Sample Control Area |
J

— | Help |

_ . " A|
//-. \ Th-s is context-sensitive J

y| hezp. Well, nct really,
1 but such help text could

/ caoi_y be gercrated by o
ceal help system. ALl w