Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

Christian Heller

Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

llmenau

Cataloging-in-Publication Data

Christian Heller.

Cybernetics Oriented Programming (CYBOP):

An Investigation on the Applicability of Inter-Disciplinary Concepts
to Software System Development

llmenau: Tux Tax, 2006

ISBN-10: 3-9810898-0-4

ISBN-13: 978-3-9810898-0-6

Information on Ordering this book

http://www.tuxtax.de, http://www.cybop.net

Written as Dissertation

Supervisor 1: Prof. Dr.-Ing. habil. llka Philippow (Chair), Technical University of limenau
Supervisor 2: Prof. Dr.-Ing. habil. Dietrich Reschke, Technical University of limenau, Germany
Supervisor 3: Mark Lycett (PhD), Brunel University, Great Britain

Submission: 2005-12-12; Presentation: 2006-10-04

Copyright (© 2002-2006. Christian Heller. All rights reserved.

Cover lllustration: TSAMEDIEN, Dusseldorf
Printing and Binding: Offizin Andersen Nexd, Leipzig/ Zwenkau

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts.

A copy of the license is included in the section entitled " GNU Free Documentation License”.

Trademark Credits
Most of the software-, hardware- and product names used in this document are also trademarks

or registered trademarks of their respective owners.

Donations
Companies planning to publish this work on a grand scale are asked to notify the author
<christian.heller@tuxtax.de> and to consider donating some of their sales revenues, which will

be used exclusively for the CYBOP and Res Medicinae free software projects.
Text printed on recycled and acid-free paper.

Printed in Germany

To all kind-hearted People who contribute to Humanity;

against Those whose only Aim in Life is to amass Money

Contents

Preface

1 Introduction
1.1 Information Science
1.2 Software Crisis
1.3 Motivation L
1.4 Cybernetics L
1.5 Method e
1.6 Example e
1.7 Structure

I Basics

2 Software Engineering Process
2.1 Waterfall Process
2.2 lterative Process L
2.3 Agile Methodologies
2.4 Extreme Programming
2.5 Method Maturity
2.6 Abstraction Gaps e
2.7 Software Architecture

Physical Architecture
3.1 ProCess.

3.2 Application Servero

XV

11

13
14
14
16
17
19
19
22

viii Contents
3.3 Database Server 28
3.4 Presentation Client L 30
3.5 Web Client and Server. 31
3.6 Local Process 32
3.7 HumanUser 33
3.8 PeerNode 34
3.9 Remote Server 35
3.10 Legacy Host 36
3.11 Systems Interconnection L 37
3.12 Scalability 39
3.13 Misleading Tiers 40

4 Logical Architecture 43
4.1 Paradigm and Language 45

4.1.1 Language History 45
4.1.2 Paradigm Overview 47
4.1.3 Hardware Architecture 48
4.1.4 Machine Language e 51
4.1.5 Assembly Language 51
4.1.6 Structured- and Procedural Programming 51
4.1.7 System Programming 57
4.1.8 Typeless Programming 58
4.1.9 Functional Programming 58
4.1.10 Logical Programming 60
4.1.11 Data Manipulation Language oo 61
4.1.12 Markup Language 61
4.1.13 Page Description Language 66
4.1.14 Hardware Description Language 67
4.1.15 Object Oriented Programming 68
4.2 Pattern 79
421 Architectural 81
422 Design 97
423 Idiomatic. 103
424 Framework 107
4.3 Component Oriented Programming 109

4.3.1 Inversionof Control 110

Contents ix

4.3.2 Component Lifecycle 111
4.3.3 Interface and Implementation 112
4.3.4 Separation of Concerns 113
4.3.5 Spread Functionality 115
4.3.6 Aspect Oriented Programming 117
4.3.7 Agent Oriented Programming 120

4.4 Domain Engineering 122
441 Tool & Material 124
442 Generics 124
4.4.3 Domain Specific Language Lo 125
4.4.4 Specification Language 127
4.45 Generative Programming oL Lo 131
4.4.6 Model Driven Architecture 131
447 Modeland Code 133

4.5 Knowledge Engineering Lo 135
4.5.1 Representation Principles00 137
452 Dateand Rule 137
453 Agent Communication Language 138
454 SemanticWeb 141

4.6 Conceptual Network 143
4.6.1 Ontosand Logos 144
4.6.2 Applicability 145
4.6.3 Two Level Separation 145
4.6.4 Building Blocks 146
4.6.5 Terminology 148
4.6.6 Schemes 149
46.7 Ontology e 152
4.6.8 Archetype 153
4.6.9 Dual Model Approach 155

4.7 Modelling Mistakes 158
5 Extended Motivation 161
5.1 Idea e 162
5.2 Recapitulation 163

53 Approach 165

X Contents

Il Contribution 171
6 Statics and Dynamics 173
6.1 Virtual- and Real World 173
6.1.1 Mindand Body 173
6.1.2 BrainRegions 176
6.1.3 Cell Division 177
6.1.4 Short- and Long-Term Memory 178
6.1.5 Information Processing Model 180
6.1.6 Persistent and Transient 181

6.2 System and Knowledge 182
6.2.1 Configurable or Programmable 182
6.2.2 Code Reduction 184
6.2.3 Base-and Meta Levelo 185
6.2.4 Reference- and Archetype Model 185
6.2.5 Common- and Crosscutting Concerns 186
6.2.6 Application and Domain L0 oL 187
6.2.7 Platform Specific and -Independent 189
6.2.8 Agent with Mental State 189
6.29 DataGarden 190

6.3 Knowledge Management System 192
6.3.1 Hardware Connection L. 192
6.3.2 Memory e 194
6.3.3 Processing 194
6.3.4 Lifecycle 196

7 Knowledge Schema 199
7.1 Human Thinking 199
7.1.1 Basic Behaviour 199
7.1.2 Conglomerate 201
7.1.3 Abstraction 202
7.1.4 Interaction 207
7.1.5 Intrinsic or Extrinsic Propertieso 210
7.1.6 Language 210
7.1.7 Quality and Quantity 213

7.2 Design Reflections 214

Contents xi
7.2.1 Pattern Systematics 214
7.2.2 Recommendation 216
7.2.3 Model Metamorphosis 217
7.2.4 Structure by Hierarchy 221
7.2.5 Association Eliminationo 0oL 222
7.2.6 Hierarchical Algorithm 224
7.2.7 Framework Example Lo 225
7.2.8 Categorisation versus Composition 229

7.3 Knowledge Representation 230
7.3.1 Knowledge Ontology 230
732 Schema 234
7.3.3 Double Hierarchyo 235
7.3.4 Modelling Example Lo 237
7.3.5 Container Unification 239
7.3.6 Universal Memory Structure 239

8 State and Logic 243

8.1 A Changing World e 243
8.1.1 Change follows Rules, 243
8.1.2 From Philosophy to Mathematics 244
8.1.3 System 247
8.1.4 Self Awareness 250
8.1.5 Communication 253

8.2 Translator Architectureo 257
8.2.1 Interacting Systems 257
8.2.2 BasicPatterns 259
8.23 Placement 261
8.2.4 Simplification 262
8.2.5 Communication Model 263

8.3 Knowledge Abstraction and -Manipulationo 000 L 265
8.3.1 Algorithm 265
8.3.2 Operations 266
8.3.3 Primitives L 266
8.3.4 Logic Manipulates State L Lo 267
8.3.5 Without Capsules? 269

Xii

Contents

111 Proof

9 Cybernetics Oriented Language

9.1
9.2

9.3

9.4

9.5

Formality
Definitiono
9.21 Syntax
9.2.2 Vocabularyo
9.23 Semantics

9.2.4 Tag-Attribute Swapping

Constructs
9.3.1 State Examples
9.3.2 Logic Examples
9.3.3 Special Examples L.

9.3.4 Inheritance as Property

9.3.5 Container Mapping
9.3.6 Hidden Patterns
Comparison
941 RDF
942 OWL.
Tool Support
9.5.1 Template Editor
9.5.2 Knowledge Designer
9.5.3 Model Viewer

10 Cybernetics Oriented Interpreter

10.1

10.2

Architecture
10.1.1 Overall Placement
10.1.2 Inner Structure
10.1.3 Pattern Merger
10.1.4 Kernel Concepts
10.1.5 Security
Functionality in Detail
10.2.1 Process Launching.
10.2.2 Lifecycle Management
10.2.3 Signal Checking
10.2.4 Signal Handling

271

273

Contents Xiii
10.2.5 Operation Execution L 324
10.2.6 Model Transition L 324
10.2.7 Data Creation 325

10.3 Implementation 327
10.3.1 Simplified C 327
10.3.2 Corrected C 328
10.3.3 Used Libraries 328
10.3.4 Development Environment Lo 329
10.3.5 Error Handling 329
10.3.6 Distribution and Installation 330

11 Res Medicinae 331

11.1 Project 331
11.1.1 Free and Open Source Software 331
11.1.2 Portals and Services 332
11.1.3 Tools o e 333
11.1.4 Contributors 334

11.2 Analysis e 335
11.2.1 Requirements Document 335
11.22 EHR & Co. 335
11.2.3 Episode Based 337
11.2.4 Evidence Based 338
11.2.5 Continuity of Care 339
11.2.6 Core Model 339

11.3 Standards 341
11.3.1 Overview o o 341
11.3.2 Record Modelling 342
11.3.3 Messaging and Communication 344
11.3.4 Terminology Systems 347
11.3.5 Further Standards 352
11.3.6 Standards Development L. 355
11.3.7 Implication 356

11.4 Realisation 357
11.4.1 Student Works L 357
11.4.2 First Trial o 359

11.4.3 Knowledge Separation 360

Xiv Contents

11.4.4 Reimplementation 362

11.4.5 Module Modelling 363

IV Completion 367
12 Review 369
12.1 Validation L 369
12.1.1 Distinction of Statics and Dynamics 370

12.1.2 Usage of a Double-Hierarchy Knowledge Schema 372

12.1.3 Separation of State- and Logic Knowledge 373

12.2 Evaluation 374
12.2.1 Knowledge Triumvirate 374

12.2.2 Common Knowledge Abstraction 376

12.2.3 Long-Life Software System oL 377

12.3 Limits . . . o o 378
13 Summary and Outlook 381
13.1 Summary e 381
13.2 Future Workso 383
13.3 Fiction e 387
14 Appendices 389
14.1 Abbreviations L 389
14.2 References e 409
14.3 Figures L 437
144 Tables e 443
145 History e 445
14.6 Migration to CYBOL 453
14.7 Call for Developers 455
14.8 Abstract 457
149 Kurzfassung L e 459
14.10Licences 461
14.10.1 GNU General Public License 461

14.10.2 GNU Free Documentation License 469

14.11Index L 479

Preface

I slept and dreamt that Life was Joy.
I awoke and saw that Life was Service.
I acted and behold, Service was joy.

RABINDRANATH TAGORE

Prologue

To me, basically, there are two ways to deal with a scientific subject:

1. The deepened investigation on a special area aiming to find completely new phe-

nomenons

2. The systematic subsumption of multiple known aspects of one or many disciplines

aiming to find new cross-correlations and ideas

Both approaches may lead to new theories, methods and concepts. And both may use
laboratory trials to find and prove their theories. This work follows the second approach.
The idea behind is, simply spoken, to steal ideas from nature and various fields of science,

and to apply them to software design.

Laboratory Trials are what Coding is in informatics — experiment and proof of operability, at
the same time. Some information scientists have the opinion that coding weren’t scientific
enough and not necessary to create new theories or to achieve good results. I doubt this. In
my opinion, there are things that can only be found when actually implementing ideas in a
computer language. And in the end, a theory is worth much more when having been proven
in practice. This document contains proven ideas that were growing in my mind over the

last few years, while dealing with topics such as:

Xvi Preface

- Structured- and Procedural Programming
- Object Oriented Programming

- Design Patterns and Frameworks

- Component Based Design and Agents

- Ontology Structured Domain Knowledge
- Document- and User Interface Markup

- Persistence Mechanisms

- System Communication

- Operating System Concepts

The usage of typical buzzwords could not quite be avoided in this work, yet do I hope that
the ideas and results are nevertheless explained straightforward and well enough to be really

useful to some other developers out there.

This document claims to be an Academic Paper. To all practitioners who do not want to
read it for that reason, I would like to point out that each and every concept in it arose from
practice, that is coding. Like most developers, I started up with only a few lines of code in
one Java class, later extended to more classes, a whole framework and so on. Whenever 1
stumbled over difficulties, I thought through and improved my current design by applying
patterns recommended by several software development Gurus. It was only when I realised
that even those concepts were not sufficient, that I made up my own. They are entitled
Cybernetics Oriented Programming (CYBOP), because most ideas behind them stem from

nature.

Finally, this document has become my thesis, written to earn a doctorate (Dr.-Ing./ PhD)
in Informatics/ Software Engineering. You may wonder why I release it under the Free
Documentation License (FDL). Well, I'm a full supporter of the idea of Free Knowledge,
Free Software, a Society free of Patents which are only hindering its development. There

are three reasons that have contributed to my decision:

1. Hope to get helpful Feedback from readers

2. Trust in the scientific Fairness of colleagues, worldwide, to properly reference this

document even though it is licensed under the FDL

3. Wish to contribute to the open source movement now (and not in some years when the

document might reach a more stable version), to speed up its successful development

Preface Xvii

This is a growing document undergoing steady development. It is not and doesn’t claim to
be free of errors nor to contain the only possible way for application system development.
So, if you find errors of whatever kind or have any helpful ideas or constructive critics,
then please contribute them to <christian.heller@tuxtax.de> or to the CYBOP developers
mailing list <cybop-developers@lists.berlios.de>!

Scientific Progress

An Abstraction allows to capture the real world by representing it in simplified models. Such
models contain only the essential aspects of a special domain. Any unimportant nuances, in
the considered context, are neglected. Correct abstract models is what makes science easy.

Good science can be easy. If it is not, then probably either:

- there is a mistake in the model
- it is not fully understood by the scientist him/ herself

- the explaining person wants to keep back knowledge, making others look clueless

One of the biggest hindrances to scientific progress is too much or false respect for existing
solutions. No theory/ model/ concept is ever finished; no document/ software/ product is
ever fully completed. There is always room for improvements. In the end, it is all just a

person’s subjective perception and an arbitrary, abstract extract of the real world.

It is always worth reviewing and questionning everything in depth, again and again. Stand-
still means regress. The best example showing how to work around these critics is the
Free and Open Source Software (FOSS) movement where all the time, existing solutions are

rewritten, to be improved.

Software Patents

This work is about software. Software abstracts the real world, its items and processes, and
it can store these information and their relations which make up actual Knowledge. In the
modern, so-called Information Society, it becomes more and more important to have free
access to external knowledge. This is an essential human right and will decide about the

future living quality of people.

xviii Preface

So much the important it is to prohibit the application of patents to software! They make an
exclusive club of large companies own the rights on banal, ordinary, day-to-day algorithms
and methods that many people use. And, they thereby kill any new ideas and hinder
research efforts that depend on these basic algorithms. If Software Patents and patents on
Computer Implemented Inventions (CII) got introduced, any free software developer and
especially Small- and Medium Sized Enterprises (SME), the driving force of innovation,
could not unfold their full potential anymore, since much of their time and effort would then

have to go into patent inquiries and costly legal disputes.

Software patents are dangerous for the free development of thoughts! Certain lobbies exert
an increasing influence on politics and push members of parliaments to agitate and vote in
their interest. Since probably every reader of this document has an interest in informatics,
every reader is also affected by the software patent enforcement. But everybody can do

something about it, not only in Europe! Express your protest and sign the petition at [91]!

Free Publishing

Reputation in the scientific world strongly depends on the number of publications in scientific
journals, conference proceedings, magazines etc., of which some have greater kudos, some
less. A Philosophiae Doctor (PhD) student, for example, is expected to publish in some
of the acknowledged journals, in order to be conferred a doctorate. The grant of project
fundings by local-, national- or Furopean Union (EU) governements and sponsorship of
a professor’s department at university depend on it as well. Some unfair practices and
shortcomings of the current system of publication shall therefore be mentioned here. There

are at least four disadvantages of publishing in scientific journals. An author:

e is almost always forced to assign his copyright to the publisher;

e has very little chance of publishing completely new ideas, since evaluators (which
are to guarantee a certain scientific level) sieve those which seem too crazy or are
unknown to them and do not match state-of-the-art science, so that really new ideas

can hardly become popular in this way;

e has to wait many months before being informed about article acceptance, sometimes
further months to presentation at a conference and yet more months until a journal/
proceedings are finally available — which, besides the unfine delay, is enough time for

an evaluator to adapt the best ideas and publish them in a modified form before;

Preface XiX

e and everyone else have to pay money for receiving journals (even for the one containing
the author’s own work), or become a member of certain scientific societies for some

discount — which means that the work is not freely accessible.

Further, there is something often labelled Citation Mafia. Whether an article gets published
in a journal or not depends on it being accepted by a number of reviewers (normally three).
In order to avoid personal battles, the article author never gets to know the evaluators’
names or proficiency and has to blindly rely on the good taste of a conference’s program
committee. However, evaluators, although tied to ethical standards, often seem to have their
list of friends or seem to just prefer authors who have already published elsewhere, leading
to circles of scientists citing each other, quite independent from the quality of their papers.

Logically, also here, there are a number of disadvantages:

e Young scientists have a hard life and need a long time for getting their articles ac-

cepted, independent from how innovative they are.

e Mafioso scientists often warm up old stories or deliver well-formulated, but rubbish

articles not earning the predicate scientific.

Don’t ask for proof — I don’t have it. But almost everybody in the scientific business knows
about these issues. Unfortunately, only few people [166] talk about- or try to change them.
Obviously, many scientists prefer to either play the same old game or are scared of personal
disadvantages. However, it feels like increasingly more researchers, in particular the new
generation, become aware that these drawbacks hinder scientific progress and new solutions
need to be found. Well, there is free online journals such as the Journal of Free and Open
Source Medical Computing (JOSMC) [226] or the BioMed Central (BMC) [326] publisher,

where research articles are: free to access immediately, peer reviewed, citation-tracked ...

Although this document cannot deliver solutions to the above-mentioned problems, it men-
tioned those to inform the reader and spur further discussion. Supportive actions in this

process would be that:
e scientists acknowledge no-cost entry open source conferences like LinuxTag & Co. [82]
as alternatives to traditional ones

e professors more readily accept citations of free knowledge sources such as Wikipedia

[60] in scientific works of their students

e students and scientists publish their works (code and documentation) under open

source licenses

XX Preface

New Science

It was end of October 2004 that I discovered Stephen Wolfram’s book A New Kind of Science
[344] (published in 2002), through a link in Wikipedia [60]. By that time, I was already

heavily writing on my own work.

During those years of thinking about software systems, nature, the universe — I felt pretty
similar to how Wolfram describes it in the preface of his book. Starting with an inspection
of state-of-the-art techniques, diving deeper and deeper into several topics, I soon realised
that they all could not deliver a coherent, conclusive solution to software modelling. Each
had its own drawbacks that made workarounds necessary. And, the more I dived into the
different technologies, the more complex, complicated, intransparent they got — but still,

none seemed to provide an owerall solution.

It was only when I got more and more distance to existing solutions and moved away from
current thinking, towards a more universal approach and a view at software systems through

the eyes of nature, that I found the basic principles described in this work.

Now, after having read A New Kind of Science, I am glad that Wolfram did not already
write down everything I want to say, so that there is something left for me to contribute, by
delivering this work :-) There is one difference that soon became obvious to me: Wolfram
argues, that it is possible to study the abstract world of simple programs, and take lessons
from what kinds of things occur there and have them in mind when investigating natural
systems [60]. My work follows the exact opposite way, in that it observes phenomenons of
nature and concepts used in other sciences, and tries to apply them to the design of software

systems.

This is not to say that CYBOP does provide the overall solution. But what it surely wants
to reach is to encourage people to think in more general terms, across disciplines, to possibly
find new concepts. And for that, this work hopes to deliver some ideas. And I certainly do
hope that the more you, as readers, think about these ideas, the more sense they will make

to you, too.

Stylistic Means and Notation

The language of choice in this document is British English, more precisely known as Com-

monwealth English. Exceptions are citations or proper names like Unified Modeling Lan-

Preface XXi

guage, stemming from American English sources. (In Oxford English, Modelling would be
written with double letter). I am thinking about writing a German version of this doc-
ument, but am not sure if it will be worth the effort. If you as reader are interested in a

translation, send me a short note! The more emails I receive, the more convinced I will be.

Correctly, masculine and feminine forms are used in a work. When describing a patient’s
record, for example, one would write: his or her record. In order to improve readability, and

exclusively because of this reason, only masculine forms are used in this work.

The document sticks to the widespread Unified Modeling Language (UML) [235] standard
notation for describing classical software concepts in diagrams, wherever suitable. Minor

simplifications are applied wherever these result in a clearer illustration with better overview.

Pieces of software source code are displayed in Typewriter Typeface. Emphasised words

are italicised.

Footnotes are not used on purpose. In my opinion, they only interrupt the flow-of-reading.

Remarks are placed in context instead, sometimes enclosed in parentheses.

To all authors and contributors of the Wikipedia Encyclopedia:

I have cited so many Wikipedia articles in this work, that it would not have been possible to
create an extra bibliography entry for each of them, without letting the frame of this work
explode. Therefore, I have just referenced Wikipedia in general, whenever one of its articles

was used.

Some scientists still label Wikipedia a Pseudo Encyclopedia not worth being mentioned in
scientific works. However, it is my firm believe that this will change in the near future and
one day, it will be hard to write any work without referencing Wikipedia knowledge, which

will then (if not already now) be of best quality.

Acknowledgements

Certainly, first thanks is due my wife Kasia and my Parents and Sisters, being always with
me, in good as in bad times. Not less important to me are my aunt Maria Kosiza, my great
Relatives and our former chaplain Johannes Preis, who have helped shaping me the way I

am.

I would like to thank my professor, Ilka Philippow, for greatly encouraging me during my

work while leaving enough room to develop my own ideas. Equal thanks is due my supervi-

XXii Preface

sors Dietrich Reschke and Mark Lycett. Detlef Streitferdt and Bernd Ddne gave numerous
hints improving the quality of the first part of my work. Consultation with Bernd and Wolf-
gang Fengler helped me understand Petri Net diagrams and their hardware background as
well as Assembler programming. Whenever I got doubts about what I was doing, I was very
lucky to receive good motivation from my colleagues Volker Langenhan, Oswald Kowalski,
Todor Vangelov and Kai Bollert. Oswald’s talks about hardware concepts made me find
useful parallels to software. Alexander Fleischer helped out when I was struggling with

IATEX’s paper size option.

My thanks go to my students Jens Bohl, Torsten Kunze, Dirk Behrendt, Kumanan Kana-
gasabapathy, Jens Kleinschmidt, Martin Fache, Karsten Tellhelm, Marcel Kiesling, Teodora
Kikova, Dennis Reichenbach, Stefan Zeisler, Michael Simon, Henrik Brandes and Saddia
Malik for contributing their theses, tutorials or source code to the project. Special thanks
to Rolf Holzmiiller who brought in some innovative ideas for CYBOL, in the final phase of
my work, and helped cleaning many bugs in CYBOI.

Reminiscences on good times go to my former colleagues of OWiS Software who, together
with the Technical University of Ilmenau (TUI), have contributed with great commitment
to the development of the Object Technology Workbench (OTW) UML tool which I would
have liked to use in the early stages of my work. Pity it hasn’t gone Open Source after its
development was stopped in 2000 :-(Thanks to Martin Wolf, Rene Preifiel, Dirk Henning

and all colleagues who have been patient and well-explaining teachers!

I would like to acknowledge the contributors of CYBOP [256] and Res Medicinae [266],
especially all medical doctors, e.g. Claudia Neumann and Karsten Hilbert, who supported
the second project with their analysis work [135] and mailing list discussions. Furthermore,
I want to mention Thomas Beale from the OpenEHR project [22] whose freely published
design document (back in 2001) gave me some initial ideas in the early stage of my work. Ac-
knowledged be all these brave Enthusiasts of the Free/ Libre Open Source Software (FLOSS)
community, who have provided me with a great amount of knowledge through a comprising
code base to build on. I shall mention the contributors of FLOSS projects such as Scope
[267], Apache Jakarta [253], JOS [261], JDistro [260], the OpenHealth [168] mailing list
readers, the OSHCA [241] members and all other supporters of our projects and ideals.

Great thanks goes to the Urban und Fischer publishing company, for providing anatomical
images from their Sobotta: Atlas der Anatomie [319] and to the Open Clip Art project [103]
for its wonderful library of free art! Similarly, I have to thank the free online dictionaries of

LEO [72] and the Technical University of Chemnitz [51].

Preface Xxiii

I am grateful to all people who openly publish their knowledge on the web. Without the
numerous free sources, I would have never been able to accomplish this work. Especially in
the state-of-the-art part, I had to heavily rely on existing sources. It is also therefore that
I have decided to put my work under the GNU FDL licence [104]. I would be happy to see
large parts of it copied in Wikipedia [60]!

Let me finish this preface with ARTHUR SCHOPENHAUER’s words:

All truth passes through three stages:
First, it is ridiculed.
Second, it is violently opposed.

Third, it is accepted as being self-evident.

Thank you for reading!

Ilmenau, October 2006 Christian Heller <christian.heller@tuztaz.de>

1 Introduction

Even a Way of a thousand Miles begins with one Step.

SAYING

Information Technology is gaining more and more importance in modern society. Some
people even talk of the Information Age. What FElectricity was for the Industrial Age,

Information is for today’s society.

And Software plays one of the, if not the most important role thereby.

1.1 Information Science

Science is one form in which humans express their aspiration for Perception. It should
— but unfortunately not always does — serve the well-being of people. Similarly, scientific

Inventions usually are to ease human’s life.

The results of many technical inventions are Tools, Machines or Robots (figure 1.1). A
passive tool is a mostly simple device used by humans to carry out a task better. The word
machine is used to describe advanced, active tools which can run by themselves, only driven
by an external force like steam or electrical energy. A robot, finally, is an enhanced machine
which may imitate human behaviour (humanoid) or take over (industrial) tasks that are
too dirty, dangerous, difficult, repetitive or dull for humans [60]. Its parts are often called
Hardware. It does not necessarily have the same shape as the human body but can come
very close. Also, it contains some pieces of rudimentary Intelligence that lets it act alone
(autonomous). The intelligence basically controls the way in which the robot functions what
is sometimes called Workflow or Program. That must be encoded, for example in form of a

Punchcard or pieces of Software, kept as pure text or binary data in some electronic memory

2 1 Introduction

passive

software

—*

hardware [

active

Figure 1.1: Scientific Inventions

or on a storage medium.

A Computer can be seen as handicaped robot that can think but not move. Essentially,
it represents the intelligent parts of a robot and is able to process (compute) Information
(data content of a message [71]). But its hardware is pruned to pure information input and
output. While the importance of robots lies in their Movement actions, it lies in problem
Solving and system Simulation for computers [60]. Software plays the biggest role thereby.

It contains the programs after which a computer is run, after which it acts.

One important area the science of information, called Informatics, deals with is software —
the art of representing and processing information. As such, one of its major aims is to find
Abstract Models which represent the real world best. The better this is done and the better

information can be stored and processed, the better software can assist its human users.

1.2 Software Crisis

An early question in software engineering was how to write programs that control a computer
system’s Hardware correctly and efficiently. Over time, the importance of hardware shifted
in favour of Software which nowadays contains most of the logic needed to run an application

on a computer system. Consequently, much more research emphasis is now placed on the

1.2 Software Crisis 3

finding of clever modelling concepts that help writing correct and effective, stable and robust,
flexible and maintainable, secure software. Another objective is to increase the effectiveness
and lessen the expenditure of cost and time in software development projects, by reusing

(pieces of) software.

The past 40 years have delivered numerous helpful concepts, for instance Structure and
Procedure, Class and Inheritance, Pattern and Framework, Component and Concern, and
many more. They undoubtedly have moved software design far forward. Nevertheless, the
dream of true componentisation and full reusability has not been reached. Czarnecki [66]
identifies problems in the four areas: Reuse, Adaptability (in this work also called Flezibility),

management of Complexity and Performance.

Modern software is very complex. It runs on different hardware platforms, uses multiple
communication paradigms and offers various user interfaces. Many tools and methods assist
experts as well as engineers in creating and maintaining software but do they not seem
sufficient to cope with the complexity so that often, systems still base on buggy source code

causing:

- False Results

- Memory Leaks

- Endless Loops

- Weak Performance

- Security Holes

Are these exclusively the fault of software developers? Or, are the used concepts perhaps
insufficient? Using the same, allegedly unsatisfying concepts caused some people to talk
about an ongoing Software Crisis, sometimes Complexity Crisis, affecting not only high-

level application programming, but also low-level microchip design [67].

However, answers are not easy to find. Software design is Arts and Engineering, at the same
time. Not everything is or can be regulated by rules. It is true, developers have to stick to a
set of design rules — and tools that support their usage exist — but they also have to be very
creative. All the time, they have to have new, innovative ideas and apply them to software.
This is what makes the creation, integration, test and maintenance of software so difficult.

There is not really a uniform way of treating it.

4 1 Introduction

1.3 Motivation

To the issues that this work has with some state-of-the-art solutions belong in particular

three things:

1. Abstraction Gaps in Software Engineering Process (chapter 2)
2. Misleading Tiers in Physical Architecture (chapter 3)

3. Modelling Mistakes in Logical Architecture (chapter 4)

The traversing of abstraction gaps in a software engineering process belongs to the main
difficulties in software development, and causes considerable cost- and time effort. It neces-
sitates a steady synchronisation between domain experts and application system developers,
because their responsibilities cannot be clearly separated and interests often clash. A first
objective of this work is therefore to contribute to closing these gaps, especially the one

existing between a designed system architecture and the implemented source code.

The misinterpretation of the physical tiers in an information technology environment often
leads to wrong-designed software architectures. Logical layers are adapted to physical tiers
(frontend, business logic and backend) and differing patterns are used to implement them.
Instead, systems should be designed in a way that allows the usage of a unified translator
architecture, so to give every application system the capability to communicate universally

by default, which is the second objective of this work.

Several well-known issues exist with the modelling of logical system architectures, for exam-
ple: fragile base class problem, container inheritance, bidirectional dependencies, global data
access. These and others more result from using wrong principles of knowledge abstraction,
like the bundling of attributes and methods in one class, as suggested by object oriented
programming, or the equalising of structural- and meta information in a model. A third
and final aim of this work is therefore to closer investigate the basic principles and concepts
after which current software systems are created, and to search for new ideas and concepts,

with the objective of finding a universal type structure (knowledge schema).

On its search for new ideas, this work intentionally tries to cross the borders to other scientific
disciplines. It can therefore also be called an inter-disciplinary effort. Results from many
different sciences are applied to software engineering. Most emphasis, however, is placed on
the comparison between human- and computer systems. Nature has always been a good

teacher and its principles have often been copied; so does this work.

1.4 Cybernetics 5

1.4 Cybernetics

One scientific subject being inter-disciplinary since its creation is Cybernetics. Its name
stems from the ancient Greek word Kybernetes meaning Steersman and it has many def-
initions [134]. One that was coined in 1948 by Norbert Wiener sees Cybernetics as the
science of information and control, no matter whether it is about living things or machines.
The American Heritage Dictionary of the English Language [251] defines it as the theoret-
ical study of communication and control processes in biological, mechanical, and electronic

systems, especially the comparison of these processes in biological and artificial systems.

The closely related subject of Bionics is a specialisation of cybernetics (Bionics = Bio-
Cybernetics) [73]. It can be defined as the application of biological principles to the study

and design of engineering systems [251].

Other related fields which are not considered further in this work are morphology (structure-
function), general systems theory (complexity, isomorphic relationships), biomechanics (pros-
thetics), biomimetics, robotics and artificial intelligence. However, the results described in

this document might also be of importance in those areas.

Since Software Engineering is a kind of Systems Engineering, the consideration of systems as
a whole gains in importance. Cybernetics as science of observing, comparing and controlling
biological and technical systems is of great importance in the document on hand. Using
models inspired by biology and psychology (but also further disciplines such as philosophy

or physics), the science of Bionics plays an important role, too.

Sticking to the system idea of Wiener and in the fashion of the science of Bionics, this
work and the new concepts described therein are called Cybernetics Oriented Programming

(CYBOP).

1.5 Method

Despite all scientific methodology, research is mostly a journey into the blue. Likewise did
this work not follow a linear way of progression, but rather a zigzag course between theory

and practice (figure 1.2), which may be labelled Constructive Development.

At the beginning, there was the wish to create a software application for use in medicine.
Development started off by using classical programming techniques. Whenever a problem

occured, it was solved by applying yet more up-to-date techniques and latest software design

6 1 Introduction

structure for states and logic
<

“physical dimensions
double-hierarchy knowledge
~ human thinking

universal translator pattern
human communication

system-knowledge separation
body and mind
top-level container

 hierarchical universe

monolithic java application

Figure 1.2: Constructive Development

principles, such as Patterns. This worked out well until the point at which the complexity

of the software could not be handled easily anymore and new ideas were demanded.

It was only when state-of-the-art concepts got more and more unsatisfying and insufficient to
maintain a clear architecture, that new ones had to be found. After some time of reflexion,
the principles of human thinking for abstracting the real world in artificial models could be
identified as source of new ideas for software design. Further ideas were later taken over
from other phenomenons of nature and various scientific disciplines. The obvious similarities
between human- and computer systems (information input, -storage, -processing, -output)

should be rationale enough for an inter-disciplinary approach.

The concepts resulting from both, traditional and new ideas, got finally merged and de-
veloped towards the CYBOP theory (figure 1.3). For this new kind of programming, the
distinction of Statics and Dynamics, a special Knowledge Schema and the separation of

State and Logic are necessary. Chapter 5 will define these in greater detail.

This work reports about the progress of finding new ideas for software design. However,
since problems did not occur in a predictable way, while developing the mentioned applica-
tion, their presentation in order of appearance would be rather confusing. A systematised
structure of sections is therefore used in this work to organise most problems after the pro-

gramming paradigm they belong to. For the interested reader, chapter 11 describes the

1.6 Example 7

traditional
programming

structure
procedure

class cybop
inheritance

statics & dynamics
knowledge schema
state & logic

scientific
disciplines

new
concept
ideas

Figure 1.3: Merger of traditional and new Concepts

stepwise construction and taken design decisions of the prototype anyway.

1.6 Example

In the course of this work, most different solutions, frameworks and models have been
developed, which is why it turns out to be rather difficult to deliver a continuous example

here.

Some traditional concepts and many new ideas of this work are demonstrated on examples
taken from a Medical Information System environment, with focus on the Electronic Health
Record (EHR). This counts for the theoretical models of the first and second part as well
as for the practical examples in part III. Many other examples and models, though, were
picked arbitrarily, depending on their adequacy for demonstrating a corresponding concept

or idea.

The actual application of the CYBOP concepts is described in chapter 11 where a prototype
software project called Res Medicinae gets introduced. It is to validate the new concepts

and to give the proof of their operability.

8 1 Introduction

1.7 Structure

This document is divided into fourteen chapters. Neglecting this introduction, thirteen

chapters remain which are organised in four parts. They are illustrated in figure 1.4.

contribution proof: completion

software statics
engineering & cybol review
process dynamics

summary
cyboi &
future

physical knowledge
architecture schema

logical state res
& . appendices
architecture) medicinae PP
logic

extended
motivation

Figure 1.4: Document Structure

Part I considers basic concepts of software development (State of the Art), before the then
following part II contributes new concept ideas. Practical proof of their operability is given
in part III. And part IV finally completes the work with a review, summary and outlook

into the future.

Software Engineering Processes (SEP) (chapter 2) have to be briefly described to be able
to estimate the effects of abstraction changes on the actual SEP phases. The Physical
Architecture (chapter 3) of a standard Information Technology (IT) environment is neces-
sary background knowledge for later reflections on the design of software systems and their
communication paradigms. Finally, the Logical Architecture (chapter 4), that is conceptual
solutions for structuring software systems, is investigated, to later be able to possibly find

Pros and Cons.

A short Recapitulation of introduced state-of-the-art concepts and the idea of an inter-
disciplinary, cybernetics-oriented approach lead to an FEztended Motivation (chapter 5)

whose results and solutions are described in the remaining parts of the work.

1.7 Structure 9

A first description focuses on the distinction of Statics and Dynamics (chapter 6). In a
second step, a new kind of Knowledge Schema gets introduced (chapter 7). Thirdly, State

and Logic are described as to-be-separated knowledge models (chapter 8).

The application of the merged traditional and new design concepts results in the XML-
based Cybernetics Oriented Language (CYBOL) (chapter 9). A corresponding Cybernetics
Oriented Interpreter (CYBOI) (chapter 10) is needed to execute systems defined in that
language. The Res Medicinae prototype application (chapter 11) is written in CYBOL and
executed by CYBOI.

One might argue that chapters 9 (CYBOL) and 10 (CYBOI) should rather belong to part
II, called Contribution, since they contain newly developed technologies. However, as they
were needed for the practical proof, and in order to keep the chapter symmetry, they were

placed in part III, called Proof.

After a Review validating and evaluating the CYBOP programming philosophy in compar-
ison to the original motivation (chapter 12), a Summary and recommendations for Future
research are given (chapter 13). The Appendices (chapter 14) contain used abbreviations,
references to literature and the usual lists of figures and tables. A glossary was omitted
since this document does not want to be a lexicon. All terms are explained at their first ap-
pearance in the text. A short history of thoughts that lead to the creation of this document
and recommendations for a migration to CYBOL as well as some licences in full text follow.
Caution! The page numbers behind an index entry at the end of this document refer to the

Beginning of the section in which the entry appeared.

Part |

Basics

2 Software Engineering Process

The Way is the Aim.

CONFUCIUS

Software does not only contain and process information, it is information itself. Its creation,
existence, growing old and death are called Lifecycle. Software stands at the end of a
sequence of abstractions which is often called a Software Engineering Process (SEP). Besides
the single steps of work and methodology to follow, a SEP often specifies the tools to be
used and the roles of people involved [14]. Software development history has shown plenty
of different forms of such processes, but most can be categorised into one of the following;:

- Waterfall Process

- Iterative Process

- Agile Software Development

- Extreme Programming
This work is not exactly about software engineering processes, nor does it want to introduce
yet another one. Its main purpose is to deal with the results of a SEP’s phases: Abstractions.
Three forms of abstraction are common to most processes:

- Requirements Analysis Document

- Architecture Design Diagrams

- Implementation Source Code
In order to have a common base of understanding and to be able to estimate the effects

of abstraction changes on the actual software development phases, it is necessary to briefly

describe some processes, which is done in the following sections.

14 2 Software Engineering Process

2.1 Waterfall Process

The Waterfall Process (figure 2.1) is the classical way to develop a product. It assumes that
the requirements are clear and do not change during a project. Waterfall software develop-
ment is pretty straightforward and usually consists of the sequenced phases Requirements,

Analysis, Design, Implementation (Realisation, Coding), Test and Integration (Release).

Figure 2.1: Waterfall Process with Back Flow

Numerous variations of waterfall processes exist. The simplest ones deliver their product at
once, at the end of the project, what is often called Big Bang Delivery [205]. Others integrate
some kind of Back Flow [302] that allows to consider test results in further development.
One example that has combined software development- and testing activities is the V-Modell
97 [147) (figure 2.2). Its name stands for its shape: the left-hand (downhill) side of the V'
represents the development; the right-hand (uphill) side represents the corresponding test

activities.

2.2 lterative Process

An [terative Process (figure 2.3) contains phases as known from the waterfall process, sup-

plemented by the new idea of a Reentrant Structure (Feedback Loop). All phases are gone

2.2 lIterative Process 15

| e

implementation

Figure 2.2: V-Model

through repeatedly, as long as the product is not satisfying. Whenever new requirements
show up, also after completion, new features can be added to the system by reiterating a

new project cycle.

Also here, many variations exist. They are called incremental, evolutionary, staged, spiral
or whirlpool, or similarly. In the end, they all have their roots in some kind of Iteration
which should frequently produce working versions of the final system that have a subset of

the required features, as Fowler [98] writes.

A famous representative is the Rational Unified Process (RUP) [181]. Developed by Philippe
Kruchten, Ivar Jacobson and others, RUP is the process complement to the Unified Modeling
Language (UML). Its strength of being a process framework that can accommodate a wide

variety of processes is its weakness, at the same time. Fowler [98] criticises this as follows:

As a result of this process framework mentality, RUP can be used in a very
traditional waterfall style or in an agile manner (explained in section 2.3). So
as a result you can use RUP as an agile process, or as a heavyweight process —

it all depends on how you tailor it in your environment.

16 2 Software Engineering Process

integration requirements

analysis

implementation

Figure 2.3: Iterative Process

2.3 Agile Methodologies

The principles of Agile Methodologies (figure 2.4) are applied by a group of so-called lightweight,
adaptive software development processes with few bureaucracy, less predictability, less process-
and document-orientation, but more emphasis on people and their skills, and on source code

— which is considered the key part of documentation.

Besides Eztreme Programming (XP) and Open Source Software (OSS) development, both
described in section 2.4, there are several other methodologies that fit under the Agile banner.
Fowler explains some of them in [98], which contains Alistair Cockburn’s Crystal Family, Jim
Highsmith’s Adaptive Software Development (ASD), Scrum, Feature Driven Development
(FDD) by Jeff De Luca and Peter Coad, the Dynamic System Development Method (DSDM)

specified by a consortium of British companies and some remarks on Context Driven Testing.

For the purpose of this paper, further investigation on details of the mentioned methodologies
is not needed. The general principles of agile software development (manifesto) are the
important part to recognise, because they suggest a different, more agile approach to software
engineering. Although many techniques of agile methodologies had been known and used
for long, at least in OSS development, they had not been investigated, documented and
promoted for business use in this form before. This is the great achievement of the Agile
Alliance [4].

2.4 Extreme Programming 17

individuals and interaction over processes and tools

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

while there is value in the items on the right,
those on the left are valued more

Figure 2.4: Agile Manifesto

2.4 Extreme Programming

Extreme Programming (XP) uses the idea of an iterative structure as explained in section
2.2, with the difference that it contains not only one but many cycles to assure sufficient
feedback. The whole process can be cascaded and split into more fine-grained processes,
for example Iteration, Development and Collective Code Ownership. Figure 2.5 shows a
strongly simplified view of the XP methodology, with emphasis on its nested structure and

multiple iterations. Better and more detailed overviews are given in [340].

In some way or the other, the classical process phases as first mentioned in section 2.1
also appear in XP, although they may have different names or a modified meaning. The
requirements document, for example, is replaced by so-called User Stories, which are similar
to usage scenarios (except that they are not limited to describing a user interface), but not
to be mixed up with use cases [340]. Also, a number of new phases like Release Planning
appear and more fine-granular activities like Learn and Communicate or Stand Up Meeting

are added. The basis and starting point of each XP project are four common values:

- Communication
- Feedback

- Simplicity

18 2 Software Engineering Process

communication simplicity 4 values

feedback courage

Figure 2.5: Extreme Programming (strongly simplified)

- Courage

The last decade has shown several pushes and increasingly greater support for Free and
Open Source Software (FOSS) [242]. What makes this software so successful, besides the
fact that its source code is open and freely available, is its astonishingly fast development
model. Well, there surely are as many different development methodologies as there are
FOSS projects out there, but many of them would probably, at least partly, match into XP.
Additionally, however, there are a few significant differences that characterise Open Source

Development. Among them are [98]:

- Collaboration between physically distributed teams

- Maintainer responsible for overall coordination and design

- Highly parallelisable debugging
In his book The Cathedral and the Bazar [271], Eric S. Raymond provides further insights.
Popular slogans taken from it are: Release early and often!, Delegate everything you can! or:
Be open to the point of promiscuity! He recommends to foster a community of developers,

lead by Doing and Good Humour. Yet Tim Churches reminds people not to take Raymond’s

recommendations as dogma [168]:

2.5 Method Maturity 19

Although Eric S. Raymond’s ... essay brought one particular FOSS develop-
ment paradigm to a lot of people’s attention, it may have also done the FOSS
movement a disservice by making people think that the ’bazaar’ approach is

the only way in which FOSS can be developed.

Instead, each project should pick a methodology that best suits its needs, may it be

cathedral- or bazaar-like.

2.5 Method Maturity

Numerous research efforts try to find the ideal software development paradigm and many
academic papers were written on the topic. In order to be able to compare the resulting
methodologies, a couple of which were described in the previous sections, some kind of

measure is needed.

The Capability Maturity Model for Software (SW-CMM) [248] is such a measure. The
newer CMM version is called Capability Maturity Model Integration (CMMI). Intended to
help organisations improve the maturity of their software processes, it describes underlying
principles and practices in terms of an evolutionary path [45]. The CMM is organised into
five levels describing a software process’ maturity:

1. Initial: ad hoc, occasionally even chaotic, scarcely defined

2. Repeatable: established discipline for repetition of earlier successes

3. Defined: documented, standardised activities for organisation

4. Managed: detailed quality measures, quantitative understanding

5. Optimising: continuous improvement through feedback

Two examples using the CMM for process evaluation are described in [284] which considers

the V-Model and in [247] which investigates XP.

2.6 Abstraction Gaps

Software has to be developed in a creative process (methodology) called Software Engineer-
ing Process (SEP). As the previous sections tried to show, many different forms of such

processes exist. Every project, consciously or not, follows a SEP that sooner-or-later, in one

20 2 Software Engineering Process

form or the other, goes through the three common phases Analysis, Design and Implemen-
tation (figure 2.6). Each phase creates its own (ideally equivalent) model of what is to be
abstracted in software and it is the differences in exactly these models that often, actually

always cause complications.

The analysis mostly results in a Requirements Document which investigates the problem
domain and uses expert knowledge to specify the functionality of the software to be created.
This specification is mostly informal, that is an ordered collection of textual descriptions.

Sometimes, semi-formal descriptions such as tables or graphics are used additionally.

It is the aim of the design phase to deliver a clear system architecture with little redundancies
and only few interdependencies, which it may specify by help of semi-formal Diagrams.
Recent years showed an increased use of the Unified Modeling Language (UML), a collection
of diagram specifications for representing static or dynamic aspects of a system. Normally,
a top-down approach is chosen for the design of a system. Hereby, the overall architecture is
considered first, before moving into details. The less common bottom-up design would start
the other way round and first try to build small components to construct the whole system
from. A third possible approach, called Yo-Yo [41], would mix the two above-mentioned

kinds.

Finally, implementation of a system is done formally, in (one or more) programming lan-
guages. The retrieved Source Code represents the temporally final abstraction, the software

that was to be built.

It is obvious that at least two gaps (figure 2.6) have to be crossed when using the described

phases:

1. Requirements Document — Architecture Diagrams

2. Architecture Diagrams — Source Code

Many efforts try to minimise the first gap by telling their analysis experts to specify use
cases, workflows and static structures using the corresponding diagrams provided by the
Unified Modeling Language (UML). Other efforts like the Feature Modelling that became
especially popular in the area of Product Line-/ System Family Engineering [30] introduce
an intermediate step of abstraction. The feature modelling itself is part of the analysis
but can logically be placed between analysis and design. The results it delivers are called
Feature Models [300, 246]. They provide hierarchical structures of the design properties of
the system to be built. By applying feature models, the former big abstraction gap is broken

2.6 Abstraction Gaps 21

requirements | feature | architecture source
document model diagrams code
A

Figure 2.6: Abstraction Gaps

down into two smaller ones (figure 2.6), that are easier to cross:

la Requirements Document — Feature Model
1b Feature Model — Architecture Diagrams

2 Architecture Diagrams — Source Code

That way, the Traceability between concrete requirements and architecture components
can be improved. Moreover, the Communication between stakeholders in the development
process can profit from feature models because of their closeness to both, analysis and design.
Yet has the usage of feature models one disadvantage, too: another gap in abstraction is

created through them.

The same happens in [107], where a special knowledge level called Conceptual Ontology
Representation, comparable in its aims to the feature model, gets introduced as additional
abstraction step. The aim of becoming more independent from implementation code for
retrieving a human-readable form of knowledge, to improve communication between domain
experts and engineers may well be reached, but sooner-or-later, also these models have to be
transferred into program source code, by bridging the classical abstraction gaps mentioned

above.

Bridging or closing these abstraction gaps (sometimes called Semantic Gaps or Conceptual

22 2 Software Engineering Process

Gaps [66]) is also known as: achieving higher intentionality [66] and remains an unsolved
issue and task for software engineering. One aim of this work is to try to contribute to a
possible solution, with special focus on reducing gap 2, existing between a designed system

architecture and the implemented source code.

2.7 Software Architecture

As was shown in the previous sections, a software engineering process covers a whole spec-
trum of activities and abstractions. Several models were created to gain an overall view
on the resulting system architectures, across the single software development phases. The
so-called Architecture Views that these models provide represent a whole system from the

perspective of a related set of concerns, as [291] states. Two examples are shown following.

conceptual view

=

Q

>

. c

module view o
=)

(&)

(0]

x

(0]

code view

Figure 2.7: Four Views Model [138]

The Four Views model (figure 2.7) proposed by [138] is best suitable for representing archi-
tectures of systems that are implemented in a procedural programming language. It contains

four different views that serve the following purposes:

- Conceptual View: describe the major design elements of a system and the relations

between them

2.7 Software Architecture 23

- Module View: represent the decomposition of a system into modules that are grouped

in layers

- Code View: organise source code into object code, libraries and binaries, and into

corresponding version files and directories

- Ezecution View: map software to hardware and distribute software components

logical development

view /\ view
user view
scenarios

process] physical

view view

Figure 2.8: The 4+1 View Model of Architecture [182]

Architectures of systems that are implemented in an object-oriented way are better repre-
sented by the 4+1 View model (figure 2.8), proposed by [182] and embraced as part of the
Rational Unified Process (RUP) [181]. It separates static and dynamic aspects and consists
of five different views, with the following purposes:

- Logical (Design) View: map required system functionality to architecture elements

- Development (Implementation) View: focus on the actual software module organisa-

tion
- Physical (Deployment) View: assign software elements to concrete hardware nodes
- Process View: describe dynamic runtime behavior of the executed system

- Scenarios (Use Case +1 View): collect domain knowledge, from a user’s view, and

use them to validate and unify the other four views

24 2 Software Engineering Process

Many other architecture modelling approaches like for instance the Architecture Description
Languages (ADL), some representatives of which are described in [109, 53], exist but are
outside the scope of this work and not elaborated further here, because the following two
chapters were created according to the 4+1 View Model of Architecture. Two simplifications
are made, however: The Physical- also includes the Process View (chapter 3), because
processes are considered as communicating systems running on physical machines, and the
Logical- also contains the Development View (chapter 4), because logical models represent
abstractions at different stages of software development. Scenarios are not considered since

they belong to requirements engineering whose techniques are not a topic of this work.

3 Physical Architecture

Simplicity is the Result of Maturity.

JOHANN CHRISTOPH FRIEDRICH VON SCHILLER

Software provides the functionality through which robots act and computers represent and
process information. Both are special kinds of machines which only get useful for humans
if they can be controlled and communicated with. Communication is an essential ability
for almost any kind of system. Autonomous systems exist and may well be useful, but is it
nearly always the Interaction and Cooperation that makes technical systems (from now on

called Computer in this work) so interesting and helpful to humans.

In many cases, systems are limited to one role: Client or Server. Clients ask questions
which servers answer. But both are able to send as well as to receive information. One-
way communication without any feedback is rarely useful. Besides the mentioned client-
and server-, there are other roles that a computer system can take on when talking with

so-called Communication Partners.

The following sections will stepwise build up- and briefly investigate some examples of well-
known system constellations and possible communication languages that are commonly used
in a general Information Technology (IT) environment. Because physical systems and their
interactions are considered without any knowledge about their inside, one also talks of this
as the Physical Architecture of an IT environment. Its understanding is important for later
reflections on the inner architecture of software systems (chapter 4). Also will chapter 8
come back to system communication principles and introduce a translator architecture for

universal communication.

26 3 Physical Architecture

3.1 Process

The most common word used to describe a running computer program is Process. Tanen-
baum [304] defines it as an abstract model based on two independent concepts: Resource

Grouping (space) and Ezecution (time).

He writes that Resource Grouping meant that a process had an address space containing
program text and data, as well as other resources. A Thread of Ezecution, on the other
hand, were the entity scheduled for execution on the Central Processing Unit (CPU). It had
a program counter (keeping track of which instruction to execute next), registers (holding
its current working variables) and a stack (containing the execution history, with one frame
for each procedure called but not yet returned from). Although a thread would have to
execute in some process, the thread and its process were different concepts and could be

treated separately.

A slightly different explanation is given in [159]:

A thread is the path a program takes while it runs, the steps it performs,
and the order in which it performs the steps. A thread runs code from its
starting location in an ordered, predefined sequence for a given set of inputs.
The term Thread is shorthand for Thread of Control. (One) can use multiple
threads to improve application performance by running different application

tasks simultaneously.

Abstract Concept Explanation Synonyms

Session Bundle of processes of one user

Process Group Collection of one or more processes Job

Process Container for related Resources System, Application, Task
Thread Schedulable Entity Lightweight Process

Table 3.1: Systematics of Abstract System Concepts

There are other abstract concepts which are of importance, especially in an Operating Sys-
tem (OS) context. A terminal in the Linuz OS [167], for example, may control a Session
consisting of Process Groups which in turn contain many Processes providing resources for

the threads running in them. Table 3.1 shows one possible systematics of these concepts.

Some ambiguities exist, however. The term Job which, some decades ago, still stood for a

program or set of programs, is nowadays used to label a process group in Windows 2000

3.2 Application Server 27

[304, p. 7, 796] and similarly in Linuz [167, p. 125, 237]. The notion of a Task is sometimes
used equivalent to thread [67], but other times refers to a process or even process group
[167, p. 113]. Additionally, some sources use the term in the meaning of a signal or event

belonging to a work queue called Task Farm or Task Bag [305, p. 548, 606].

This document uses the more general word System to write about a process that manages
the input, storage, processing and output of data in a computer. This is contrary to some
other works which mean a whole computer, including its hardware and software programs
running on it, when talking about systems. In the understanding of this work, once again,

a System is a Process (software system) running on a Computer (hardware system).

3.2 Application Server

One well-known system, nowadays, is the Application Server. The name implies that this
system is to serve other systems, so-called Presentation Clients (section 3.4). It may be

programmed in languages like Java, Python, Smalltalk, C++, C or others more.

On the other hand, there are systems running all by themselves, without any access to/
from another system — so-called Standalone Systems. In reality, they hardly exist since
most applications run in a surrounding Operating System (OS) and are thus not really
alone. An OS may be called standalone but mostly, even that consists of a number of sub
processes solving background tasks. That is why the name standalone is used when one

wants to place emphasis on the system itself, neglecting its communication with others.

Many kinds of application servers exist. Multiple services are offered by them, for example
storage or persistence handling but also application- and domain specific functionality. A
healthcare environment, as example, may contain several servers, each fulfilling one task
such as person identification, resource access decision, image access and so on — just like

people in real life have abilities and professions.

Systems of an IT environment are structured into so-called Layers, another name for which
is Tier. The application server alone represents a I Tier environment. The more systems of
different type (presentation client, application server, database server) are added to an envi-
ronment, the more tiers are added. For that reason, distributed client-server environments

are called n Tier.

When people talk about a Server, they very often mean a Computer on which a Server

Process is running. This is neither completely wrong nor absolutely correct. A computer

28 3 Physical Architecture

can run many different processes, only some of which may be servers. Hence, the computer

can act as Server but also as Client, at the same time.

3.3 Database Server

Another popular kind of server system, besides the application server, is the Database Server,
also called Database Management System (DBMS). It manages structured data called a
Database (DB) and serves clients with persistent data. The arrow in figure 3.1 points in the
direction into which the application server sends its queries to the database server, in order
to retrieve data. Example DBMS representatives are PostgreSQL, MySQL, DB2, ORACLE,
ObjectStore, POET or Versant.

application
server

jdbe
database
server

Figure 3.1: Database Server (2 Tiers)

Persistent Data are those that live longer than the system working on them. Very often, this
is domain-specific- but also configuration information. These are stored in a filesystem or
database [350]. Transient Data, on the other hand, is temporary information that a system
holds during its lifetime, to function correctly. They get destroyed together with the system

which created them.

Managing persistent data implies a number of quite complex tasks, the details of which will

not be part of this document. To these aspects of database servers belong:

3.3 Database Server 29

- Querying
- Transaction Handling

- Locking
Different types of database systems exist. The major ones are:

- Hierarchical and Network DBMS

- Relational DBMS (RDBMS)

- Object-Relational DBMS (ORDBMS)
- Object-Oriented DBMS (OODBMS)

Hierarchical DBMS were the first (electronic) databases ever used. They managed their
data in tree structures, starting each access from the root node. Network DBMS went one
step further: data could be associated at will [350, p. 128]. Relational DBMS are based
on tabular data structures which can have relations. They were the first to accomplish a
true separation between application and data. Special languages were created to define and
query such data sources: The Data Definition Language (DDL) and the Structured Query
Language (SQL). Object-Relational DBMS were to fill the semantic gap between Object-
Oriented Model (OOM) and Entity-Relationship Model (ERM) structures. Their extensions
introduced a number of user-defined data types. Object-Oriented DBMS conclusively close
the semantic gap between object-oriented applications and data. Their programming in-
terface is often integrated into a framework. The new SQL-based Object Query Language
(OQL) [350, p. 138] was created for them.

The communication between systems can be eased with special techniques. After Tanen-
baum [306], these were often called Middleware since they are placed between a higher-level
layer consisting of users and applications, and a layer underneath consisting of operating
systems. In the case of database systems, one such mechanism is the Java Database Con-
nectivity (JDBC) [121, 178]; another one the Open Database Connectivity (ODBC) [350, p.

170, 177]. They provide a common interface for many different relational databases.

Another technique are Enterprise Java Beans (EJB) and comparable mechanisms. They
represent so-called Business Objects (BO) and hence actually belong to the previous section
describing application servers. However, the containers in which EJBs live also contain
functionality for persistence- and transaction handling which is why they are mentioned
here. Further documentation can be found in the corresponding literature [119] and sources

[29, 112].

30 3 Physical Architecture

3.4 Presentation Client

A system is called Client when it uses services of a server. Most modern applications incor-
porate abilities to communicate with server systems which may run on the same computer

as the client or on a remote machine that has to be accessed over network.

presentation
client

rmi

application
server

jdbe
database
server

Figure 3.2: Presentation Client (3 Tiers)

But also clients can offer services as well as servers can use external services and such become
clients themselves. The application server in figure 3.1 becomes a client when accessing
the database system. As can be seen — Client and Server are quite arbitrary terms to

characterise systems.

Figure 3.2 illustrates the communication between a presentation client and application server
over network. Again, various mechanisms such as Remote Method Invocation (RMI), outside
the Java world rather called Remote Procedure Call (RPC), exist to ease the way two remote

systems talk with one another.

Frequently, people distinguish between Thin Client and Fat Client (the latter also called
Rich Client) [350, p. 176]. While a thin client’s task is nothing else than to display in-
formation coming from some server, a fat client also takes over part of the business data

processing which is otherwise done by the server only.

3.5 Web Client and Server 31

3.5 Web Client and Server

With the emerge of the Internet, several new kinds of services like Email, File Transfer,
Web etc. became popular. The web service allows information to be published in form of a
Web Page. Web pages can be written in markup formats like Hypertext Markup Language
(HTML) and Eztensible Markup Language (XML) or, using special tags, as Java Server
Pages- (JSP) and PHP Hypertext Preprocessor- (PHP) instructions. Before being displayed,

the latter two need to be translated by a preprocessor inside the web server, into HTML.

web
browser
http
web presentation
socket X
server client

rmi

application
server

jdbc
database
server

Figure 3.3: Web Client and Server

The principle as shown in figure 3.3 is easy: A Web Server stores web pages which can
be accessed by clients called Web Browser. Browsers extract and translate (render) the
(graphical) information given in form of a web page and display them. But they are also
able to handle actions such as keyboard input or mouse click, and send these information

back to the web server.

Moreover, browsers can locally execute small programs called Applets which were down-
loaded from the web server. Their counterpart are Servlets which are executed in multiple

threads on the web server, offering the actual services.

Web communication is based on standards like the Transfer Control Protocol/ Internet

Protocol (TCP/IP) and the Hypertext Transfer Protocol (HTTP) [303]. Section 3.11 will

32 3 Physical Architecture

systematise them together with other standards for system interconnection. The socket

mechanism may be used to connect a web server to an application server.

Many other aspects are important when talking about internet services. There is the issue of
security, there is performance, user-friendliness and many more which will not be discussed

further here, since it would exceed the frame of this work.

3.6 Local Process

Not all software systems run on physically separated computers, also called Nodes. And not
all communication happens over network. As well, one Local Process can talk to a second on
the same machine (figure 3.4). In fact, all applications have this ability, at least for talking

with the surrounding operating system.

web
browser
http
web presentation
socket .
server client
rmi
application
server
ims jdbe
local database
process server

Figure 3.4: Local Process

Sometimes, local processes are needed by the operating system itself. Those are running in
the background then which is why they are often called Daemon. Because they offer special
services, daemons are nothing else than small servers. They fulfil tasks like managing all

printing or email delivery of a system, or similar things [304, p. 74].

Very often, it is useful to let local client applications talk with each other. One part of

a document (for instance a diagram) that was created by help of a special application

3.7 Human User 33

may want to get integrated into another document (for instance a letter) which is edited
by another application. A number of mechanisms were created to solve this Inter-Process

Communication (IPC) task, for example:

- Dynamic Data Exchange (DDE) [203]

- Object Linking and Embedding (OLE/ OLE2) and ActiveX, both now based on the
Component Object Model (COM) [350, 119]

- Java Message Service (JMS) [112]
- Desktop Communication Protocol (DCOP) [81]
- Bonobo [96]

- Pipes [167, 304]

Although usually used for local communication (on the same node), some of these also
function over network. Again, this document will not discuss their inside functionality.

Plenty of books were written about that.

3.7 Human User

One system that needs special consideration is the Human User. In the first instance, it
can be seen as normal system that is able to communicate with other humans but also with

artificial software systems running on machines such as computers (figure 3.5).

At the second view, one realises that due to the difference in construction, human systems
rely on other kinds of communication signals. While network cards are usually enough for
two computers to exchange data, additional input/ output devices are needed to let human
beings and computers talk to each other. To these devices count: Keyboard, Mouse, Screen,
Printer and many more. They are made to suit the five human senses, that is to generate

and understand optical, acoustical, mechanical and similar signals.

The optical information displayed on a screen is often systematised into character-based

Teztual User Interface (TUI) and window-based Graphical User Interface (GUI).

The scientific subject dealing with those issues in more detail is called Human-Computer

Interaction (HCI). One working definition given in [133] states:

34 3 Physical Architecture

web
browser
http
web presentation
socket)
server client
rmi
mouse
human qui application
user server
ims jdbe
local database
process server

Figure 3.5: Human User

Human-computer interaction is a discipline concerned with the design, evalua-
tion and implementation of interactive computing systems for human use and

with the study of major phenomena surrounding them.

3.8 Peer Node

Tanenbaum and Steen [306] define a Distributed System as a collection of independent
computers that appear to its users as a single coherent system. With System referring to a
process rather than only hardware, as defined in section 3.1, it seems appropriate to rephrase

and use this for the definition of a general Distributed Computing Environment (DCE):

A distributed computing environment consists of at least two systems that work

together over a network but run on independent computer hardware (nodes).

Besides the previously mentioned client/ server (c/s) environments, so-called Peer-to-Peer
(P2P) computer networks latterly became popular. In them, nodes do not have just one role,
but act as client and server at the same time (figure 3.6), thus sharing their computing power
and bandwidth. Common P2P protocols are: Freenet, Gnutella2, BitTorrent, eDonkey,
FastTrack or Napster [60]. Many more exist.

3.9 Remote Server 35

web
browser
http
web presentation
socket i
server client
rmi
mouse gnutella
human qui application| _freenet peer
user server node
jms jdbe
local database
process server

Figure 3.6: Peer-to-Peer Node Communication

Just like nodes in a P2P network, human beings are capable of communicating both ways,
taking the role of a client or server. The organs that are needed to do so are put into

comparison with the corresponding devices of a computer system, in chapter 8.

3.9 Remote Server

Figure 3.7 introduces a Remote Server to the illustrated example environment. It may access
a database system — similarly to the already existing application server. In this example,

however, it just works on simple local files, using Streams.

Like the previously introduced kinds of systems, remote systems need to rely on a number of
standards and mechanisms, in order to be able to communicate over network. A comparison
of some of these is given in [233, 37, 144]. In the following is a list of common techniques
that were not yet mentioned before:

- Common Object Request Broker Architecture (CORBA) [234, 327, 119]

- Simple Object Access Protocol (SOAP) [331]

- Network Dynamic Data Exchange (NetDDE) [203]

- Distributed Component Object Model (DCOM/ COM+) [119]

36 3 Physical Architecture

web
browser
http
web presentation
socket)
server client
rmi
mouse corba
human qui application| soap remote
user server server
jms jdbe stream
local database file
process server

Figure 3.7: Remote Server

- KParts [81]

- Universal Network Objects (UNO) [239]

3.10 Legacy Host

Finally, there is often a need to integrate Legacy Systems, which are a special variant of
remote software systems running on computers with an older architecture. Those comput-
ers are also named Host, as in the example of figure 3.8, or Mainframe. The applications
running on them are programmed in languages like the Common Business Oriented Lan-
guage (COBOL) or Programming Language One (PL/I) [89], the latter developed as an
International Business Machines (IBM) [151] product in the mid 1960’s.

Host computers manage nearly everything an ancient information technology environment
needs. They are responsible for persistence and processing of data. Often, they contain
hierarchical databases [124] using flat files like the Virtual Storage Access Method (VSAM)
format. True clients do not exist here. Character-based terminals are the way to communi-
cate with the host which controls all interaction (including keyboard and screen), within a
Third Party Maintenance (TPM) Customer Information Control System (CICS) runtime

environment.

3.11 Systems Interconnection 37

web
browser
http
web presentation textual
socket i .
server client terminal
rmi cics
mouse ibm
human qui application| ware legacy
user server host
jms jdbe local
local database database
process server server

Figure 3.8: Legacy Host
3.11 Systems Interconnection

Communication is essential to an IT environment as described before. To enable and ease
communication across different systems, special solutions have been developed and accepted
as de facto or de jure standards. One such specification is the well-known Open Systems
Interconnection (OSI) reference model, defined by the International Organization for Stan-
dardization (ISO). Numerous books [303] and documents on the web [249] describe this

model and its protocols.

Figure 3.9 organises the seven layers of the model in table form, with one row representing
one layer. The first column contains a layer’s name, the second examples of typical network
protocols and the third devices in which the protocols are used. Simple Mail Transfer
Protocol (SMTP), Telephone Network (Telnet), File Transfer Protocol (FTP), Hypertext
Transfer Protocol (HTTP) and Domain Name Service (DNS) are standard protocols used
directly in software applications and -tools. X.226 is a recommendation defining the OSI
presentation protocol. The Remote Procedure Call (RPC) and Network Basic Input/ Output
System (NetBIOS) may be sorted into the session layer. Transfer Control Protocol (TCP),
User Datagram Protocol (UDP), Transport Protocol Class 4 (TP4) and Sequence Package
Ezchange (SPX) do belong to the transport layer. The Internet Protocol (IP) is used in

two versions: 4 and 6. Both of them are situated on the network level of the OSI model,

38 3 Physical Architecture

layer protocol device
7 | application smtp, telnet, ftp, http, dns gateway
6 |presentation x.226 gateway
5 session rpc, netbios gateway
4 transport tep, udp, tp4, spx gateway
3 network ipv4, ipv6, ipx router
2 link ppp, slip, fr bridge, switch
1 physical ethernet, token ring, fddi repeater, hub

Figure 3.9: 1ISO OSI Reference Model

just like the Internet Packet Ezchange (IPX) protocol. The link level contains the Point-
to-Point Protocol (PPP), Serial Line Internet Protocol (SLIP) and Frame Relay (FR), the
latter being a replacement for veterans like X.25. To the physical level transmitting raw

Bits finally, belong Ethernet, Token Ring and Fiber Distributed Data Interface (FDDI).

Many of the mentioned protocols may be assigned to more than just one layer. But it is not
the intention of this work to deal with such details. The overall ISO OSI model, however,
is mentioned because it is a good example of a structure whose layers represent increasing
levels of abstraction, what will later in this work be called an Ontology (chapters 4 and 7).
Also, the Health Level Seven (HL7) medical standard, which gets introduced in chapter 11,

received its name from referring to OSI’s seventh level — the application level [276].

While the ISO OSI model defines seven abstract communication layers, the popular TCP/IP
model uses solely four. Web communication as described in section 3.5 is based on it. Today,
TCP/IP has become the standard in network management systems. A majority of them
run the Universal Interactive Ezecutive (UNIX) Operating System (OS), of which TCP/IP
is an integral part. Margarete Payer [249] writes: Although the OSI Model is affected with
various deficiencies, it is well suitable for didactic purposes. Further, she mentions that
since some time, Andrew S. Tanenbaum uses a hybrid model for structuring his standard

book on computer networks [303], which sticked to neither OSI nor TCP/IP.

3.12 Scalability 39

3.12 Scalability

The previous sections demonstrated that there are many different ways to organise a dis-
tributed information technology environment. The physical distribution of systems is often
a user requirement, either to connect different locations or to reach better performance by
sharing the work load. The degree to which a system can be distributed to different hard-
ware is often called its Scalability. Two models of scaling can be distinguished: wvertical and

horizontal computing (figure 3.10), whose key characteristics are only described briefly here.

unscaled horizontally scaled tier
tier vertically scaled tier

ilo il ilo ilo ilo

Figure 3.10: Vertical and Horizontal Scaling

Vertical servers are large Symmetric Multiprocessing (SMP) systems with more than four
Central Processing Units (CPU) that share one common memory. One single Operating Sys-
tem (OS) instance covers the processors, the memory and input/ output (i/0) components.
Vertical servers provide high availability by building numerous Reliability, Availability, Ser-

viceability (RAS) features into the individual server, to minimise un-/planned downtime.

The alternative horizontal scaling connects many systems over network, which is often called
Clustering. A cluster contains computing nodes having one to four processors and a memory
each. The input/ output devices may belong to just one node or be shared by many. Each
node has an OS instance. Horizontal servers do not build RAS features into the individual
servers but get high RAS by replication and deployment of many servers, as Atwood [11]

writes.

40 3 Physical Architecture

Vertical System Horizontal System
Large Database Web Server
Transactional Database Firewall

Data Warehouse Proxy Server

Data Mining Directories
Application Server Application Server

High Performance Technical Computing | High Performance Technical Computing (HPTC)
(HPTC) application (non-partitionable) application (partitionable)

Media Streaming

Extensible Markup Language (XML) Processing

Java Server Pages (JSP) Application
Secure Socket Layer (SSL)
Virtual Private Network (VPN)

Table 3.2: Vertical and Horizontal Application Types [11]

Table 3.2 states some typical applications for vertical and horizontal computing. The key
difference, that after [11] affected both, their price and performance, is the Interconnect
used with each architecture. Horizontal servers use a loosely-coupled external interconnect.
Vertical servers use a tightly-coupled internal interconnect that makes data communications

faster.

3.13 Misleading Tiers

When distinguishing human- and technical systems, three kinds of Communication (in this
respect also called Interfaces) can be identified:

- Human < Human

- Human < Computer

- Computer «— Computer
Each of these relies on different communication techniques, transport mechanisms, languages
(protocols) and so on. But the general principle after which communication works, is always

the same — no matter whether technical Computer systems or their biological prototype,

the Human Being, are considered: Information is received, stored, processed and sent. De-

3.13 Misleading Tiers 41

spite these common characteristics, today’s IT environments treat communication between

a computer system and a human being differently than that among computer systems.

interact presentation read / write
client
R

-

configure application read / write
server

administer | qatabase | read/ write g / |
Bl S 4
server \

CPED D

Figure 3.11: Universal Communication between Humans and Computers

Figure 3.11 shows a three-tier environment, as described in the previous sections: tier 1
represents the Presentation Layer (mostly scaled horizontally, using smaller servers); tier
2 stands for the Application Layer (where both, vertical and horizontal architectures are
common); tier 3 is the Database Layer (dominated by vertical servers). Typical synonyms
are, in this order: Frontend, Business Logic and Backend. The tiers (layers) serve two needs:
connect different locations and share work load, as elaborated in section 3.12. However, the

split into tiers of that kind is often misleadingly interpreted, since it raises two illusions:

1. Users only interact with clients in the presentation layer: Indeed, that layer was es-
pecially introduced for end-user communication but — systems of the other layers need
to be controlled as well, by humans! Databases have to be administered; application

servers configured.

2. Persistent data are only stored in databases: The majority of systems relies on some
kind of locally available, persistent data. Even database management systems them-

selves use configuration files, for example.

Many IT architectures, or at least their illustrations, neglect the fact that in reality all

systems need a User Interface (UI) and almost all systems store some of their persistent data

42 3 Physical Architecture

outside a database. This is not necessarily a problem for the physical IT environment as such,
but it is for the internal architecture of software systems. Special solutions have to deal with
frontend (UI framework), business logic (domain patterns) and backend (data mapping).
Additionally, most modern systems contain several mechanisms that permit to communicate
with other — local or remote — systems. The serious differences in these design solutions are
one root of well-known problems like multi-directional inter-dependencies between system

parts, that make software difficult to develop and hard to maintain.

One aim of this work is to investigate possibilities for a wunification of communication
paradigms, that is high-level design paradigms (like patterns) rather than low-level pro-
tocols, in order to architect software in a way that allows the computer systems it runs on
to communicate universally. The following chapter therefore inspects the inner structure,
also called Logical Architecture, of software systems as well as state-of-the-art techniques for

its development.

4 Logical Architecture

Because nothing is more difficult and

nothing requires more Personality,

than to be in open Opposition to current Time
and loudly to say: NO.

KURT TUCHOLSKY

While the previous chapter had a look at the Physical Architecture of an IT environment,
that is the systems and their communication, this chapter will discuss the Logical Architec-

ture, that is the Inside of a software system.

The program source code of every system is — or at least should be — separated into logi-
cal parts like Layers, for example (figure 4.1). Current systems distinguish Presentation-,
Domain- and Data Source layer [101]. Each of them contains functionality for a specific
task: the presentation layer for user interaction; the domain for business logic; the data

source for database communication.

Just like physical tiers can be scaled vertically and horizontally, the logical layers within a
software system can be shared in a similar way. Figure 4.1 splits the horizontal business
logic layer of a healthcare environment into the vertical domains Documentation, Laboratory,

Reporting, Billing, Administration, Imaging, Devices.

One must not mix logical layers with the physical tiers that were introduced in chapter 3! It
is true, logical layers may be distributed to physically separated systems — the presentation
layer, for example, may be situated on the physical client tier (frontend). But as section
3.13 pointed out: In the end, all systems (not only the client tier) will have to interact with
users and further systems in some way and thus cannot only implement one functionality

but need to be able to communicate universally. More on that in part II.

44 4 Logical Architecture

presentation
domain logic
< c
Sl = = ie)
8 § £l o § 2 3
system SIS ElE| 5| <
SRR R
3= & El=°
= S

data source

Figure 4.1: System with Logical Layers

Layers are just one concept aiming to improve a system’s architecture. There are many
more. The introduction of Object Oriented Programming (OOP) and the Unified Modeling
Language (UML), for example, animated and enabled software developers to structure their
program code more and more clearly. Patterns, Frameworks, Components and Ontologies
are further techniques which delivered many new concepts and solutions. They all represent
the state-of-the-art in software design and will be investigated together with their Pros and
Cons in the following sections. The most general concepts, however, are still provided by

computer languages and programming paradigms, which is why they are described first.

Over the years, several terms and synonyms describing architectural elements were intro-
duced. Following are some examples, grouped arbitrarily into those that represent a kind
of State and others that manipulate states according to certain rules of Logic. Both will
be called Statics, later in this work (parts II and III). Besides these, there are terms for
elements that describe the runtime behaviour of a system — its Dynamics, and others for

some Structural elements. They all appear in one form or another in the following sections.

- Statics:
- State: Operand, Data, Value, Parameter, Attribute
- Logic: Operation, Operator, Function, Procedure, Method, Algorithm, Activity,
Workflow

4.1 Paradigm and Language 45

- Dynamics: Allocated Memory, Array, Instance, Object, Property, Process, Signal,

Event, Action

- Structure: Class, Component, Module, Library, Package, Layer

4.1 Paradigm and Language

Manifold instructions exist that allow humans to program a computer. A set of such in-
structions is called Programming Language and is one of many groups of different Computer
Languages. Other groups are for example Markup Languages, Data Manipulation Languages

(DML), Page Description Languages or Specification Languages [60].

4.1.1 Language History

Just as a software engineering school advocates its very own Methodology (chapter 2), each
programming language advocates a special Programming Paradigm [60] (sometimes also
more than one). Some efforts categorise languages or their paradigms historically [297]. Eric
Levenez’ Computer Languages Timeline [193] captures common programming languages
from a historical perspective. Some of them are shown in the simplified figure 4.2 (whose
columns have no meaning). A much more comprehensive overview listing more than 2500

languages is given in the Language List [176] of Bill Kinnersley.

A lineage can be identified for every language, some popular of which are shown in the
following list, the corresponding language name mentioned at first, being followed by the
names of the language’s ancestors. The right-most language represents the oldest ancestor.
Only one lineage of arbitrary choice is considered for each language; most languages have
further ancestors that are not mentioned here:

- Java 2: Java 1, Oak, Cedar, Mesa, Algol, IAL, Fortran

- C#: C++, C with Classes, C, B, BCPL, CPL, Algol

- VB.NET: Visual Basic, MS Basic, Basic, Algol

- Delphi: Object Pascal, Pascal, Algol

- Oberon: Modula, Pascal

- Self: Smalltalk, Simula, Algol

46 4 Logical Architecture

S
2

JOVIAL Lis, CoBOL
g| [_simua Basic CcPL CORAL Snobol PL
2

Smaitak | [B][Foth][Llogo]

o [¢ J[sn J[won][Prolog]
2 Modula MS Basic CLU Scheme SASL ML

Ada Mesa awk csh sed Rex

B Cedar C w Classes PostScript Miranda KRC

Sharp APL ObjectiveC C+ Concurrent G| [CommonLisp SML
ObjectPascal Eiffel nawk OO0 Forth Object Logo

1980

= Oberon Self Perl TclTk Haskell Caml
2 J ABC ANSI C bash Clos
Python Visual Basic Sather Oak
S A+ Ruby Cmm ksh lIl
& Delphi PHP JavaScript Java
[Jscript | [ECMAScript] [Objectv Cami] 00 CoBOL |
C# Java 2 O Caml
Figure 4.2: Programming Language History
- Tecl/Tk: Tcl

- Python: ABC, B
- Perl: nawk, awk, Icon, Snobol
- PHP: PHP/FI, Perl
- Ruby: CLU, Pascal
- Haskell: Miranda, KRC, SASL, ISWIM
- O Caml: Objective Caml, Caml, SML, ML
- OO0 COBOL: COBOL, Flow-Matic, B-O
- NetRezz: Object Rexx, Rexx, Rex, PL/1 ANS, PL/M, PL/I, COBOL
- Open M: M, MUMPS
- Scheme: Common Lisp, Lisp
- PostScript: OO Forth, Forth
Other historical approaches assign each programming language to a special Generation.

Commonly used programming language generations and some of their representatives are

shown following [60]:

- First Generation Language: machine-level language

4.1 Paradigm and Language 47

- Second Generation Language: assembly language
- Third Generation Language (3GL): Fortran, Algol, COBOL, Basic, C, C++
- Fourth Generation Language (4GL): SQL, Mathematica, SAS, VB, MATLAB

- Fifth Generation Language: Prolog, OPS5, Mercury

4.1.2 Paradigm Overview

Several other systematics, besides the historical one shown in the previous section, exist
to categorise programming languages and their paradigms. Some authors, for example,
divide computer languages into those that have to be compiled before being executed and
those which are interpreted at runtime. Figure 4.3 shows yet another arbitrary, tree-like

systematics that was assembled on the basis of [60] and [176].

paradigm/
language
\ \
) . declarative/
imperative L
descriptive
ﬁAﬁ i
s functional/ .
monolithic procedural . logical
applicative
%‘f [1
data
structured unstructured markup K X
manipulation

Figure 4.3: Programming Paradigm Systematics

Machine- and Assembly Language as well as System Programming are imperative (command-
oriented). Functional- and Logical Programming, on the other hand, are declarative, just
as most Scripting Languages used for Typeless Programming. The boundaries tend to be
vague, however. Many of the new languages borrow features from more than one program-

ming paradigm. Similarly, the concepts of Structured and Procedural Programming (SPP)

48 4 Logical Architecture

and Object Oriented Programming (OOP) are not only used in system programming-, but

also in scripting languages.

It is important to note that it is extremely difficult, if not impossible, to arrange all pro-
gramming languages into just one tree of categories. Kinnersley [176] writes that for every
classification scheme there will be a large proportion of languages that do not fit ... most
languages are not purely one or the other. The Logo language, for example, is an adaptation
of the functional language Lisp, that is non-imperative, yet procedural [60]. Figure 4.3 can
therefore only be seen as trial to create a systematics of the most common programming
paradigms. In order to avoid miscategorisation, the Wikipedia Encyclopedia [60] prefers to

list programming paradigms as contrasting pairs, for example:
- Procedural vs. Functional
- Imperative vs. Declarative
- Structured vs. Unstructured
- Value-level vs. Function-level
- Flow-driven vs. Event-driven
- Scalar vs. Array
- Class-based vs. Prototype-based
- Rule-based vs. Constraint
Not all items of the list are explained in this work since this would break its frame and

focus. However, some of the most important programming language concepts in use today

are described in the following sections.

4.1.3 Hardware Architecture

In his very clear book, Tanenbaum [305] organises instructions in abstract Levels (figure 4.4),
which he also calls Virtual Machines (VM), since each level could be seen as hypothetic
computer with an own language. Further on, he considers hardware and software to be

logically equivalent because one could replace the other.

The next sub sections are based on this structure. They describe lower levels, close to
hardware. Later sections then place more emphasis on concepts introduced by higher-level

Problem Oriented Languages (POL).

4.1 Paradigm and Language 49

compiler translation

assembler translation

operating system partial interpretation

microprogram / microarchitecture interpretation or direct execution

gate, memory, register hardware functionality

transistor hardware functionality

electron hardware functionality

Figure 4.4: Computer Structure (adapted from [305])

Digital Logic

As mentioned in chapter 1, it is Abstractions that enable humans to capture the surrounding
real world in a simplified way. All information is abstract. Software is information and the

data it processes are information, too.

With the emerge of Digital Computers, Digital Logic gained more importance and the new
field of science Informatics was born whose job in essence is to break down (abstract) every
piece of information to just two states: 0 and I, represented by one Binary Digit (Bit).
This is accomplished through the use of digital electronic components called Gate which
transfer one or more input signals (states) into a defined output signal by applying simple
logic functions like AND or OR. Many gates can form a 1-Bit Memory that is able to store
the states 0 or I. Memories can be grouped so to form Registers [130] which are able to

store one or many Bits.

Internally, gates consist of analogue electronic devices like Transistors, the functionality of
which is out of the scope of this document. Any other details of what is going on inside

analogue electronic components belong to the field of Solid State Physics.

One might ask why exactly 0 and I and no other states (for example 0.1, 0.2 etc.) between

them were chosen. The answer needs some background information. When talking about a

50 4 Logical Architecture

Signal in hardware computer science, people mean electric voltage. Zero and One correspond
to Low and High voltage in electronic circuits. These minimum and maximum values of
voltage are reached in rarest cases — mostly, the voltage lies somewhere between. This is
due to environmental influences called Noise which pollute a signal (voltage). Therefore,
each signal has to be interpreted as being rather high or low. The better the Signal to Noise

Ratio (SNR), the more exact this interpretation can be.

With only two possible states, interpretation failures are very rare and digital technique has
already proven to be quite error-tolerant. How much more difficult would it be to guess a
signal’s state if there were four, ten or more! That is why breaking down all information to
only High and Low (also labeled True and False or On and Off) provides the most reliable

abstraction.

There are efforts to develop Quantum Computers that use Qubits to measure data. While a
traditional Bit represents just one state, that is either zero or one, a Qubit can hold a zero,
or a one, or a superposition of these and represent more than one state, at one time instant.
Qubits can be implemented using elementary particles with two spin states, for example
represented by Quarks. Quantum computers are believed to solve certain problems faster
than any classical computer [60]. However, this is the future of computing and not part of

this work.

Micro Architecture

The Micro Architecture level contains a number of memories and the so called Arithmetic
Logic Unit (ALU) which is an Integrated Circust (IC) that is able to execute simple arith-
metic operations. The arithmetic logic unit and registers exchange data across the Data
Path. The data path is controlled either directly by hardware or by a special Micro Pro-
gram which interprets instructions from the next higher Instruction Set Architecture (ISA)

level.

Instruction Set Architecture

The Instruction Set Architecture (ISA) essentially summarises the instructions that can
be carried out by the micro architecture hardware (or interpreted by its micro program
software). Computer manufacturers usually publish a handbook describing the whole set of

instructions.

4.1 Paradigm and Language 51

4.1.4 Machine Language

The new features in this level (for example memory organisation or parallel execution of
programs) are normally provided by an interpreter program that is running on the lower

instruction set architecture level. This is the Operating System (OS).

Instructions which are identical to those of the instruction set architecture, however, are
executed directly by the yet lower micro architecture/ micro program level, and not by the

operating system. Therefore, the Machine Language level is also called hybrid.

4.1.5 Assembly Language

Languages of the layers described to here are numeric. That is, programs written in them
consist of long numerical series adapted to what a machine expects. Starting with the
level of Assembly Language, programs contain special Keywords, symbols and abbreviations
which are meaningful to humans. While programs of the former levels are written by System
Programmers, it is Application Programmers who use assembly- and higher-level languages

to write a program.

Instructions of lower levels are always interpreted. The corresponding program is called In-
terpreter. 1t is running on the level below the one the instructions stem from. An interpreter
executes an instruction directly, without generating a translated program. Higher-level lan-
guages, on the other hand, get translated into lower-level instructions before being executed.
Such translator programs are called Assembler or Compiler. New forms of programs (like
those written in Java) also use a combination of both, being first compiled into a special

byte code and then interpreted at runtime.

4.1.6 Structured- and Procedural Programming

Computer history has produced a whole plethora of high-level languages (an overview is given
in section 4.1.1). They are to ease the programming of applications which solve problems
of an arbitrary domain. Nearly all of them make use of a number of techniques that stem

from the so-called Structured- and Procedural Programming (SPP).

These techniques arise from firstly the reduction of Control Structures to a minimal set
of elements which can be combined arbitrarily in Sequenced Steps. Secondly, repeating

algorithms can be defined as Procedure and called as subroutine. That way, wild Jumps

52 4 Logical Architecture

from one part of a program to another are avoided. A procedure can also call itself which is

known as Recursion [250].

It is possible to hierarchically modularise all control structures, with each structure having
a defined Entrance and Exit. When procedures are grouped together in a separate file, then
this file is often called Module or Library. Modules can contribute greatly to the reuse and

creation of clear program code.

Two kinds of diagrams are typically used to describe a (part of a) procedural program
semi-formally: Program Flow Chart and Structure Chart. Both representations are based
on sequences of control structures. The former differs from the latter in the existence and
appearance of certain graphical elements; GoTo instructions, for example, do not exist in

structure charts.

Following is a brief description of the most important control elements of SPP, given in
form of both, diagrams [280] and C program code [309]. These basic control techniques are:

Assignment, Branching and Looping.

Assignment

A Statement (figure 4.5) is a sequence of operators and operands [106], to be evaluated
(executed) by (the next lower abstraction level of) a computer. It is also called an Ezpression.
The Operator represents the actual Operation, an active instruction to the computer. It uses
and works on passive data — the Operands, also called Variables. Following a statement in

C code:

operand++;

A Variable is a placeholder for an abstracted Data Value. It occupies space in memory
which is why this space has to be reserved before it can be used. The reservation is called
Allocation or Declaration and it states the variable’s Type and an Identifier. Commonly,
variables also get initialised through the Assignment of an Initial Value. Here an example

for declaration and initialisation through assignment in C' code:

type identifier = value;

Many statements which belong together can form a Block, also called Compound Statement.

Variables declared in a block are called its Local Variables and loose their validity outside

4.1 Paradigm and Language 53

operand++ operand++

Figure 4.5: Statement as Program Flow Chart and Structure Chart

that block. Blocks have an opening and a closing symbol. Following once more an example

in C programming language source code, showing a block with two statements:

{
statementl;
statement2;
}
Branching

A block of statements that get only executed at special occasions is called a Branch. Two
kinds of branching exist: Conditional Branching and Unconditional Branching. An im-
plementation of the latter is the well-known but also disliked goto (jump) command. The
former depends on a Condition, also called Alternative or Choice (figure 4.6), that is its
statements are only executed if the condition’s result is true. That way, a condition can
change the flow of a program. A code example follows; it shows conditional branching:
if (condition) {
statements;

} else {

statements;

54 4 Logical Architecture

condition

true false

Figure 4.6: Condition as Program Flow Chart and Structure Chart

Many programming languages offer a Multiple Condition control structure like switch or
case. It is a comfortable possibility to let a program make a choice out of many alternatives:
switch (condition) {
case constantl:
statements;
case constant2:
statements;
default:

statements;

Essentially, however, it is a subsumption of a number of simple conditions which are mostly

called if-else, and therefore replaceable by such, as shown following:

if (condition == constantl) {
statements;

} else if (condition == constant2) {
statements;

} else {
statements;

4.1 Paradigm and Language 55

The multiple condition is conceptually no innovation in comparison with the simple condition
and hence pure convenience for the programmer. The interpreter described in chapter 10

uses solely if-then statements.

Looping

The Loop (figure 4.7) is a control element that allows to iterate through statements, in
other words to execute them repeatedly, several times. Its concept is quite simple — a
jump backwards in the program. However, this low-level jump is hidden to the application
programmer using a higher-level SPP language. The loop is indicated by a special keyword
instead, for example:

while (condition) {

statements;

condition

(true)

statement
false

statement

Figure 4.7: Loop as Program Flow Chart and Structure Chart

Most programming languages offer three different loop styles, as there are:

- Pre-test loop: while, while-do

- Post-test loop: do-while, repeat-until

56 4 Logical Architecture

- Counting Loop: for, for-next

A Pre-Test Loop is used when one wants to check a condition before the statements in the
loop body are executed:

int i = 0;

while (i < 1) {

statements;

i++;

The Post-Test Loop, on the other hand, repeats all loop-body statements until a condition
is met:
int 1 = 0;
do {
statements;
i++;

} while (i < 1);

A Counting Loop, finally, can be applied when the number of necessary repetitions of the
loop-body statements is known in advance:

int i;

for (i = 0; i < 1; i++) {

statements;

The statements in all three loop examples are only executed once. It is not difficult to
see that the for loop can be replaced with a while loop by initialising the 4 variable in its
declaration line and moving the increment statement into the loop’s block. But also the do-
while loop can be replaced with a while loop. If the behaviour does not match (for example
a while block is not executed even once), then changing the initial loop variable value can
solve this problem. Otherwise, modifying the statements (algorithm) in the block, without
changing it logically, will do.

As can be seen: Most variations of the Looping concept are just a convenience for the
programmer. They are conceptually identical and can be lead back to a simple loop with

break condition, each. The interpreter described in chapter 10 uses just one kind of loop.

4.1 Paradigm and Language 57

4.1.7 System Programming

After John K. Ousterhout [244], System Programming Languages such as PL/1, Pascal, C
or C++ or Java (which evolved from higher level languages such as LISP, Fortran or Algol
— see section 4.1.1) had been introduced as an alternative to Assembly Languages and both
would differ in two ways. While in an assembly language, virtually every aspect of a machine
were reflected in the program, each statement representing a single machine instruction so
that programmers had to deal with low-level details such as register allocation and procedure

calling sequences, a system programming language were:

1. higher level because its statements did not correspond exactly to machine instructions;
a compiler would translate each statement in the source program into a sequence of

binary instructions and handle register allocation;

2. strongly typed because programmers needed to declare how each piece of information
would be used; the language would prevent the information from being used in any

other way.

Ousterhout uses the term Typing to: refer to the degree to which the meaning of information
is specified in advance of its use. After him, the strong typing (also called Static Typing)

of today’s system programming languages had several advantages, such as:
- Better manageability of large programs by differentiating between things that must
be treated differently
- Possible error detection by using type information in compilers
- Improved performance by allowing compilers to generate specialized code
But there were also a number of disadvantages when using system programming languages:
- Need to declare each variable with a particular type and to use it in ways that are
appropriate for the type
- Difficulty to create new code on the fly due to total segregation of data and code

- Impossibility to use an object of one type where an object of a different type is
expected, because variables are collected in objects with well-defined substructure

and procedures to manipulate them

58 4 Logical Architecture

4.1.8 Typeless Programming

Scripting Languages (formerly also called Job Control- or Batch Languages [60]) such as
Perl [334], Python [204], Rexx [232], Tcl [243], Visual Basic (VB) and the Universal Interac-
tive Ezecutive (UNIX) shells overcome the disadvantages of system programming languages
(section 4.1.7) by being typeless and interpreted. The paradigm behind them is sometimes
called Script Oriented Programming (SOP).

Ousterhout [244] writes that modern computers were fundamentally typeless: any word in
memory could hold any kind of value, such as an integer, a floating-point number, a pointer,
or an instruction. The meaning of a value were determined by how it is used: if the program
counter pointed at a word of memory then it were treated as an instruction; if a word were
referenced by an integer add instruction then it were treated as an integer; and so on. The
same word could be used in different ways at different times (what is also called Dynamic

Typing).

Because scripting languages are intended primarily for plugging together existing compo-
nents, they are also referred to as System Integration Languages or Glue Languages. They
provide a higher level of programming than assembly- or system programming languages.
Through their usage, integrated applications, after [244], could be developed five to ten
times faster than with system programming languages. Scripting languages sacrifice execu-

tion speed to improve development speed.

The interpreter described in chapter 10 is able to handle data (knowledge) without knowing
about their type (kind of abstraction) in advance, that is at compilation time. Although
itself written in the system programming language C, the interpreter is very flexible when

it comes to processing knowledge.

4.1.9 Functional Programming

Many languages such as Lisp and its relatives cannot be characterised cleanly as system pro-
gramming language or scripting language; they are situated somewhere between. Concepts
like Interpretation and Dynamic Typing, now common in scripting languages, stem from
Lisp [244]. Others like Automatic Storage Management and Integrated Development Envi-
ronments, now used in both scripting- and system programming languages, were introduced

by Lisp as well. Peter Norvig writes in [223]:

4.1 Paradigm and Language 59

There is a myth that Lisp (and Prolog) are Special Purpose Languages (SPL),
while languages such as Pascal and C are General Purpose (GPL). Actually, just
the reverse is true. Pascal and C are special-purpose languages for manipulating
the registers and memory of a von Neumann-style computer. The majority of
their syntax is devoted to arithmetic and Boolean expressions, and while they
provide some facilities for forming data structures, they have poor mechanisms
for procedural abstraction or control abstraction. In addition, they are designed
for the state-oriented style of programming: computing a result by changing

the value of variables through assignment statements.

The Frequently Asked Questions (FAQ) edited by Graham Hutton [146] distinguish between
Imperative Languages and Functional Languages. System programming languages as intro-
duced in previous sections belong to the first group. To calculate the sum of the integers
from 1 to 10, for example, they would probably use a simple loop and repeatedly update
the values held in an accumulator variable total and a counter variable i:

int total = 0;

for (imt i = 1; i <= 10; ++i) {

total += i;

A functional language like Haskell would express the same program without any variable
updates, by evaluating an expression, as shown below. Variable updates, that is computa-
tional effects caused by expression evaluation that persist after the evaluation is completed

[146] are called Side Effects.

sum [1..10]

The following two examples [146] show the same program in two other functional languages,

namely SML and Scheme:

let fun sum i tot = if i = O then tot else sum (i - 1) (tot + i)
in sum 10 O

end

(define sum
(lambda (from total)
(if (= 0 from)
total

(sum (- from 1) (+ total from)))))

60 4 Logical Architecture

(sum 10 0)

The Association of Lisp Users [227] points out the absence of side effects and explains

Functional Programming as follows:

Functional programming describes all computer operations as mathematical
functions on inputs. Typically, a function can be created and returned from
other functions as first-class data. This function object may then be passed
as input to other functions, perhaps be composed with other functions, and
eventually, applied to inputs to produce a value. Objects can be defined in
terms of functions that encapsulate certain data, and operations on objects can
be defined by functions encapsulating the objects. Purely functional languages
do not have assignment, as all side-effecting can be defined in terms of functions
that encapsulate the changed data. Procedural languages essentially perform
everything as side-effects to data structures. A purely procedural language
would have no functions, but might have subroutines of no arguments that
returned no values, and performed certain assignments and other operations

based on the data it found stored in the system.

The interpreter described in chapter 10 manipulates all data (knowledge) as if it would
be one huge side effect. Data (knowledge models) are not bundled with-, but kept com-
pletely outside any functions/ procedures. Only references to these data are handed over as

parameters.

4.1.10 Logical Programming

Functional Programming as introduced in the previous section is one kind of Declarative
Programming, which describes to the computer a set of conditions and lets the computer
figure out how to satisfy them [60]. Another kind is Logical Programming. It specifies a
set of attributes that a solution should have — rather than a set of steps to obtain such a

solution. Schematically, the logical programming process follows the equation:

facts + rules = results

Logical programming was strongly influenced by Artificial Intelligence (Al) and is applied in

domains such as Ezpert Systems, where the program generates a recommendation or answer

4.1 Paradigm and Language 61

from a large model of the application domain, and Automated Theorem Proving, where the

program generates novel theorems to extend some existing body of theory. [60]

The Monkey and Banana Problem is a famous example studied in the community of logical
programming [60]: Instead of the programmer explicitly specifying the path for the monkey
to reach the banana, the computer actually reasons out a possible way that the monkey

reaches the banana.

A prominent logical language representative is Prolog; a more recent one is Mercury; an

Open Source Software (OSS) one is TyRuBa.

4.1.11 Data Manipulation Language

A Data Manipulation Language (DML), after [60], is: a family of computer languages used
by computer programs or database users to retrieve, insert, delete and update data in a
database. As most popular DML, the source mentions the Structured Query Language
(SQL) that was originally developed as Structured English Query Language (SEQUEL) by
International Business Machines (IBM), after the model described by Edgar F. Codd in
[55].

Technically, SQL is a set-based, declarative computer language that, after [60], could be
used to create, modify and retrieve data from Relational Database Management Systems
(RDBMS). Its keywords are often shared into the three groups:

- Data Manipulation Language (DML): SELECT, INSERT, UPDATE, DELETE

- Data Definition Language (DDL): CREATE, DROP

- Data Control Language (DCL): GRANT, REVOKE

Since the details of that language are outside the scope of this work, they are not elaborated

further here, but can be learned at for example [282].

4.1.12 Markup Language

At latest with the distribution of the World Wide Web (WWW), Markup Languages in-
creasingly gained in popularity. A markup language separates the presentation Style of a
document from its logical Structure and Content. Well-known representatives of markup

languages, two famous of which being described in the following sections, are [60]:

62 4 Logical Architecture

- TgX / Lamport TpX (BTEX, IATEX 2¢)

- Scribe

- Standard Generalized Markup Language (SGML)
- Eztensible Markup Language (XML)

- Hypertext Markup Language (HTML)

- DocBook

- Text Encoding Initiative (TEI)

Recently, more and more projects appear that try to use markup languages not just for
document markup, but also for declarative programming.Before coming to the actual markup
languages, the paradigm of Literate Programming and its idea to use markup tokens for

distinguishing source code and documentation, is investigated.

Literate Programming

Ross Williams writes in [343, section 1.1]:

A traditional computer program consists of a text file containing program code.
Scattered in amongst the program code are comments which describe the vari-
ous parts of the code. In Literate Programming, the emphasis is reversed. In-
stead of writing code containing documentation, the literate programmer writes

documentation containing code.

In other words, Literate Programming pays more attention to proper source code documen-
tation than classical programming languages do. It mostly offers special Token characters
like the Commercial At character @ for example, which serve as code delimiters. The de-
limited blocks are determined by particular tools such as a preprocessor that filters out
program code to be processed further. All source information together (input document,
commentaries, program code) is used to generate typeset documentation files in one or more

formats.

Williams [343] means that the literate programming system provided far more than: just
a reversal of the priority of comments and code. In its full-blown form, a good literate

programming facility could provide:

4.1 Paradigm and Language 63

- Re-ordering of Code: Some programming languages force the programmer to give the

various program parts in a particular order.

- Typeset Code and Documentation: Because a literate programming utility sees all the
code, it can use its knowledge of the programming language and the features of the
typesetting language to typeset the program code as if it were appearing in a technical

journal.

- Cross referencing: Because a literate tool sees all the code and documentation, it is
able to generate extensive cross referencing information in the typeset documenta-
tion, which makes the printed program document more easy to navigate and partially
compensates for the lack of an automatic searching facility when reading printed doc-

umentation.

It is true, the actual instructions and algorithms in between commentaries are written in (or
translated into) a system programming- or other kind of language. But literate programming
places its focus on source code Documentation for which it uses Markup tokens, which is

why it was classified under Markup Language in this work.

Although literate programming itself has not gained that much popularity, its idea of using
markup tokens to generate more expressive source code documentation has. Several up-to-
date programming environments make use of it. A well-known example is the JavaDoc tool

[154]; other systems are Doxygen [324] or DOC++ [1].

TeX and LaTeX

The special-purpose TEX [179] language is the centre-piece of a typesetting system which, due
to its well-formatted output of complex mathematical formulas and generally high-quality
typesetting, is especially popular among academic circles of mathematicians, physicists and

computer scientists [316]. The Wikipedia encyclopedia [60] writes:

TEX is a macro and token based language: many commands, including most
user-defined ones, are expanded on the fly until only unexpandable tokens re-
main which get executed. Expansion itself is practically side-effect free. Tail

recursion of macros takes no memory, and if-then-else constructs are available.

The TEX system has precise knowledge of the sizes of all characters and symbols,

and using this information, it computes the optimal arrangement of letters per

64 4 Logical Architecture

line and lines per page. It then produces a Device Independent (DVI) file
containing the final locations of all characters. The DVI file can be printed
directly given an appropriate printer driver, or it can be converted to other

formats.

The PDFTeX translator program is often used to bypass all DVI generation, by creating
Portable Document Format (PDF) files directly.

Nowadays, TEX is mostly used with a template extension called Lamport TpX (KWTgX,
IATEX 2¢) [188]. The Indian TEX Users Group (TUG) writes [316]: BTgX is a document
preparation system which adds a set of functions that make the TEX language friendlier
than using the primitives provided by it. It offers programmable Desktop Publishing (DTP)

features and extensive facilities for automating most aspects of typesetting. [60]

The most important feature of TEX for this work is its kind of relating meta- with structural
information. Two examples may help here:

\documentclass [a4paper, 12pt]{book}
\includegraphics[scale=0.3]{path/file.pdf}

The first statement determines book as document class for a document to be written. It
contains additional information such as paper- and font size, in square brackets. The second
statement refers to a graphics file to be included. The additional information given in square
brackets here is the scale factor. With a different syntax, but in a comparable manner, the
knowledge modelling language introduced in chapter 9 does relate structural- with meta

information.

Extensible Markup Language

A popular, very flexible, yet simple language playing an increasingly important role in the
exchange of a wide variety of data on the World Wide Web (WWW) and elsewhere is the
Extensible Markup Language (XML) [345], defined by the World Wide Web Consortium
(W3C) [330]. Being a text format derived as simplified subset (dialect) of the Standard
Generalized Markup Language (SGML) [160], it allows to structure and store information

hierarchically as Document file. Norman Walsh [335] writes:

A markup language is a mechanism to identify structures in a document. The

XML specification defines a standard way to add markup to documents.

4.1 Paradigm and Language 65

And the XML Cover Pages [142] state:

Both SGML and XML are meta languages because they are used for defining
markup languages. A markup language defined using SGML or XML has a
specific vocabulary (labels for elements and attributes) and a declared syntax

(grammar defining the hierarchy and other features).

Historically, markup languages became widely known through the Hypertext Markup Lan-
guage (HTML) as language of the Web. To overcome its limitations, XML was originally
designed to meet the challenges of large- scale electronic publishing [345]. Today, XML is

applied in many different areas, for example:

- Document Publishing [336]

- Data Transfer [331]

- GUI Design [262, 57, 292, 273]

- Workflow Composition [136, 161]
- Database Storage [210, 70]

- Domain Modelling [295, 114]

Yet in the opinion of Robin Cover [65], the usability of XML for domain modelling is limited.

He writes:

Just like its parent metalanguage (SGML), XML has no formal mechanism to
support the declaration of semantic integrity constraints, and XML processors
have no means of validating object semantics even if these are declared infor-
mally in an XML DTD. XML processors will have no inherent understanding
of document object semantics because XML (meta-)markup languages have no
predefined application-level processing semantics. XML thus formally governs
syntax only — not semantics.

In fact, XML syntax is designed for representing an encoded serialization, and
thus has a very limited range of expression for modeling complex object seman-
tics, where Semantics fundamentally means an intricate web of constrained
relationships and properties. Otherwise stated: XML is a poor language for

data modelling ...

66 4 Logical Architecture

The XML-based language described in chapter 9 proves the opposite. By applying a common
knowledge modelling schema (chapter 7), it allows to model arbitrary meta information

(complex object semantics). Robin Cover continues [65]:

The notion of Attribute might have been more useful except that XML supports
only a flat data model for the value of an attribute in a name-value pair (essen-
tially String). This flat model cannot easily capture complex attribute notions
such as would be predicated of abstracted real world objects, where attribute
values are themselves typically represented by complex objects, either owned or

referenced.

This criticism of Cover is absolutely correct. It can be circumvented, though. The language
introduced in chapter 9 permits one attribute to store a (file) path to an external compound
knowledge template and is thus capable of representing compound properties (complex at-
tribute notions). One problem remains, however: When serialising compound knowledge
models consisting of other compound models, the quotation mark as attribute value delim-
iter is not sufficient, because the beginning and end of an attribute value may get mixed up.

Solving it, the XML standard needs to be injured (chapter 9).

4.1.13 Page Description Language

In order to be (more or less) complete in the language overview given in this work, the
Page Description Language (PDL) as further category shall be mentioned here as well.
It describes the contents and appearance (text, graphical shapes, images) of a page to be
printed in a device-independent, higher-level way than an actual output bitmap [60]. It may
therefore serve as an: interchange standard for (the) transmission and storage of printable

documents [143]. Well-known PDL representatives are:
- Device Independent (DVI) format
- Printer Control Language (PCL)
- PostScript (PS)
- Portable Document Format (PDF)

After [143], PostScript is a: full programming language, rather than a series of low-level

escape sequences. It is stack-based and interpreted. These properties made it the: language

4.1 Paradigm and Language 67

of choice for graphical output, until PDF appeared. The following PostScript code example
[60] computes (3 + 4) * (5 - 1):

3 4 add 5 1 sub mul

4.1.14 Hardware Description Language

Hardware Description Language (HDL) is an umbrella term for any computer language
formally describing Electronic Circuits, that is their design and operation, as well as tests
to verify their operation by means of Simulation [60]. HDLs used for the design of digital
circuits like Application Specific Integrated Circuits (ASIC) or Field Programmable Gate
Arrays (FPGA) include:

- Very High Speed Integrated Circuit (VHSIC) HDL (VHDL) [290, standard 1164]
- Verilog HDL [290, standard 1364-2001]

- SystemC [74]

Although being similar, HDLs are not programming languages. HDL’s syntax and seman-
tics include explicit notations for erpressing time and concurrency which are the primary

attributes of hardware, as [60] writes and adds:

An HDL compiler often works in several stages, first producing a logic descrip-
tion file in a proprietary format, then converting that to a logic description
file in the industry-standard Electronic Data Interchange Format (EDIF), then
converting that to a Joint Electron Device Engineering Council (JEDEC) for-
mat file. The JEDEC file contains instructions to a Programmable Logic Device
(PLD) programmer for building logic. On the other hand, a software (program-
ming language) compiler generates instructions to a microprocessor for moving

data.

The following sections of this chapter will be about programming-, not hardware description

concepts.

68 4 Logical Architecture

4.1.15 Object Oriented Programming

With the emerge of Object Oriented (OO) languages, an additional programming paradigm
got introduced. That is, many principles such as Structured and Procedural Program-
ming (SPP) were still holding true but got extended through Object Oriented Program-
ming (OOP). Examples of OOP languages, often defined by simply extending an existing

language, are:

- Smalltalk [202]
- C++, extending the C system programming language (section 4.1.7)
- Python, as typeless programming language (section 4.1.8)

- Common Lisp Object System (CLOS), extending the Common Lisp (CL)

dialect of the Lisp functional programming language (section 4.1.9)

The following sections describe the main concepts behind OOP in brief. Although many of
them represent improvements to SPP, this work will point out their weaknesses, too. The
merger of attributes (data) and methods (operations) into one common data structure called

Class, for example, will be criticised and eliminated later in this work (chapter 8).

Code examples in the Java programming language are given as well as Unified Modeling
Language (UML) diagrams. The UML is a semi-formal, graphical description language that
offers elements for the concepts of Object Orientation (OO). To some extend, programs can

be designed, generated and documented using special applications called UML Tools.

Classification

The main idea of object oriented programming is to structure program code into Classes
owning Attributes and Methods (figure 4.8). They are comparable to the structured data
types (struct, record) of Structured and Procedural Programming (SPP) (section 4.1.6) that
can own fields representing properties, but not behaviour. A class definition in Java source
code looks like this:
public class Example {
private Type attribute;

public void method(Type parameter) {
}

4.1 Paradigm and Language 69

class

- attribute : type

+ method(parameter : type) : void

Figure 4.8: Classification as UML Diagram

While procedures and many variables in SPP are global, that is only exist once, classes are
treated as types of which many Instances (also called Objects) can be created, including

attributes and methods. In OOP, such memory allocation is called Instantiation.

Two related data types are Abstract Class and Interface. An abstract class can hold at-
tributes and (partly abstract) methods. Just like interfaces, abstract classes cannot be
instantiated. An interface is yet more restricted in that it can only have constants but not
attributes and only declarations but not actual implementations of methods. Interfaces are

commonly used to [297]:

- Realise multiple inheritance (section 4.1.15)

- Encapsulate components (section 4.3.3)

- Pool common methods (section 4.3.4)
Specialities like Inner Classes [112] with limited scope of validity are of minor importance
to the argumentation of this document and not further explained here.

The Bundling of attributes and methods (state and logic) causes more system interdepen-
dencies and complications than were predictable. It is a big disadvantage that affects all
modern object-oriented systems. [125] Certainly, the bundling stems from best intentions to

receive cleaner code by keeping not only attributes but also methods in a common module,

70 4 Logical Architecture

such avoiding wild and global procedures. But now, modules not only have to refer to other
modules for accessing their state data; the same is needed for accessing their logic in form

of method calls.

With OOP, the number of cross-relations between modules, and inter-dependencies between
system layers may rise dramatically. In reality, state- and logic properties are two different
things that have to be kept in different places! Both can have a similar, hierarchical structure

but each is a concept on its own, as chapter 8 will show.

Encapsulation

One recommendation of object oriented programming is that the properties of an object
created as instance of a class be protected through special Access Methods (figure 4.9). A
Java code example can be found below. The intention is not to expose class attributes
to other classes by minimising direct access to them and such to provide some security by
preventing illegal access to an object’s interna. Therefore, this paradigm is called Encapsu-
lation or Information-/ Data Hiding. Another advantage is that if an attribute changes its
name, then only one place in the code (the access method), instead of hundreds, needs to
be updated.
public class example_class {
private Type attribute;
public void set_attribute(Type a) {
this.attribute = a;
¥

public Type get_attribute() {

return this.attribute;

Special keywords are necessary to ensure proper encapsulation by making attributes and
methods wvisible to only certain outside objects. These keywords are: public, protected and
private. In the Java programming language [112], an additional package protection level
is applied when none of the aforementioned keywords is found. The Delphi language [337]
knows an additional published keyword that makes properties visible in its object-inspector

tool. Other languages may contain further variations of access limitations.

The recommendation to encapsulate attributes produces thousands of lines of source code

whose usefulness is at least questionnable [126]. In about 90% of cases (practical experience

4.1 Paradigm and Language 71

class

- attribute : type

+ set_attribute(attribute : type) : void
+ get_attribute() : type

Figure 4.9: Encapsulation as UML Diagram

of the author of this document), the set and get methods consist of only one single line
accessing an attribute value which in the end is the same as accessing that attribute directly.
Sometimes, additional lines with a trigger function to update other parts of the system are
added. They get invoked whenever an attribute value of the called object is changed by a
set method:

public void set_attribute(Type a) {

this.attribute = a;

get_update_manager () .update(this);

But, as shown below, this update notification could as well be taken over by the object that
was calling the set method:
public void method() {

example_object.set_attribute (a);

get_update_manager () .update (example_object) ;

The argumentation that n this case a lot of redundant code would be produced since the
update function has to be implemented in every calling object, instead of just once in the

called object does not really hold true when looking into programming practice. The number

72 4 Logical Architecture

of external objects calling an object is mostly very well manageable. It finally seems that
thousands of set/ get access methods could be eliminated which would lead to a tremendous

code reduction and improved clearity.

The language introduced in chapter 9 does not use encapsulation and the attributes (state

knowledge) and methods (logic knowledge) modelled in it are not bundled together.

Inheritance

Inheritance allows for code minimisation by letting classes inherit attributes and methods
from their superior (sometimes called parent) class (figure 4.10). Redundant code can such
be avoided and existing code can be reused. An inheriting class in Java source code looks
like this:

public class example extends super_class {

}

super_class

- super_attribute : type

+ super_method() : void

I

sub_class

- sub_attribute : type

+ sub_method() : void

Figure 4.10: Inheritance as UML Diagram

Some object oriented programming languages (such as C++) permit Multiple Inheritance.
Classes written in those languages can have more than one superior class. Other languages
(such as Jawva) that have Single Inheritance only, sometimes offer to inherit (realise/ im-

plement) multiple interfaces. An interface forces its subclasses to implement all methods

4.1 Paradigm and Language 73

it declares (more on this in section 4.3.3) and can such provide a common Application
Programming Interface (API) which makes classes interchangeable and hence encourages

reuse.

Fragile Base Class

Despite the possible code reduction through class inheritance, there are some negative effects

that hinder just this code reduction and reuse. John K. Ousterhout writes in his article [244]:

Implementation inheritance, where one class borrows code that was written for
another class, is a bad idea that makes software harder to manage and reuse. It
binds the implementations of classes together so that neither class can be un-
derstood without the other: a subclass cannot be understood without knowing
how the inherited methods are implemented in its superclass, and a superclass
cannot be understood without knowing how its methods are inherited in sub-
classes. In a complex class hierarchy, no individual class can be understood
without understanding all the other classes in the hierarchy. Even worse, a
class cannot be separated from its hierarchy for reuse. Multiple inheritance
makes these problems even worse. Implementation inheritance causes the same
intertwining and brittleness that have been observed when goto statements are
overused. As a result, object-oriented systems often suffer from complexity and

lack of reuse.

Unwanted dependencies caused simply by the usage of inheritance are called Fragile Base
Class Problem [41, section Layers; p. 48]. The source code changes resulting from base
class manipulation are also called Cascade of Change [119, Vorwort]. They are just the
opposite of what inheritance was actually intended to be for: Reusability. Leonid Mikhajlov
and Emil Sekerinski [213] write:

This problem occurs in open object-oriented systems employing code inheri-
tance as an implementation reuse mechanism. System developers unaware of
extensions to the system developed by its users may produce a seemingly accept-
able revision of a base class which may damage its extensions. The fragile base
class problem becomes apparent during maintenance of open object-oriented

systems, but requires consideration during design.

74

4 Logical Architecture

They identify the following Restrictions [213] disciplining the code inheritance mechanism,

thus avoiding the Fragile Base Class Problem, but on the cost of general Flexibility:

No cycles: A base class revision and a modifier should not jointly introduce new cyclic

method dependencies.

No revision self-calling assumptions: Revision class methods should not make any
additional assumptions about the behaviour of the other methods of itself. Only the

behaviour described in the base class may be taken into consideration.

No base class down-calling assumptions: Methods of a modifier should disregard the
fact that base class self-calls can get redirected to the modifier itself. In this case
bodies of the corresponding methods in the base class should be considered instead,

as if there were no dynamic binding.

No direct access to base class state: An extension class may not access the state of

its base class directly, but only through calling base class methods.

No modifier invariant function: A modifier should not bind values of its instance
variables with values of the intended base class instance variables to generate an

invariant.

In order to remain highly flexible and to avoid the fragile base class problem, the language

described in chapter 9 does not use inheritance, although it could be extended to do so. In

this case, of course, its interpreter (chapter 10) would have to be adapted as well.

Polymorphism

Another object oriented feature that comes with inheritance is Polymorphism. It allows

methods to be overloaded (sometimes called overridden). That is, on two objects created

from different classes inheriting from each other, the right equally named method will be

called by the language interpreter program (figure 4.11), which leads to different behaviour

depending on the current object context. Following is a Java code example overloading a

method to gain polymorphic behaviour:

public class super_class {

}

public void method() {

do_something();

public class sub_class extends super_class {

4.1 Paradigm and Language 75

public void method() {

do_something_else();

void method() {
super_class

i do_something();
+ method() : void }

void method() {
sub_class
super.method();

+ method() : void do_something_else();
}

Figure 4.11: Polymorphism as UML Diagram

If objects instantiated from a sub class want to make use of the functionality contained in
the super class’ equally named method, the sub class’ method needs to call the super class’
method explicitly using the keyword super:
public class sub_class extends super_class {
public void method() {

super.method () ;

do_something_else();

Container

An object that got created through instantiating a class represents an allocated area in a
computer’s memory which needs to be referenced in order to be able to work with it, and

to finally destroy it. The size of that area may change dynamically, depending on how

76 4 Logical Architecture

the properties of the object are manipulated. Primitive types like integer or double also
reserve memory space, only that the size of that space is not dynamic; it is pre-defined
by the programming language, for each type. All Structured- and Procedural Programming
(SPP) languages and some Object Oriented Programming (OOP) languages, like Java, offer

standard primitive types.

| 1 |

‘ collection ‘ map tree
i i
‘ array ‘ ‘ hash map ‘
‘ vector ‘ ‘ hash table ‘
set

Figure 4.12: Java Container Framework Systematics

One way to store references to more than one dynamic element in memory, or primitive data,
is a Container. Modern programming languages offer many different kinds of containers.
Figure 4.12 shows a systematics of the Java container framework [112], as example, which
gets briefly introduced in the following paragraphs. Its main categories of systematisation

are Collection, Map and Tree.

A similar library of container classes, algorithms and iterators exists for the C++ program-
ming language. It is called Standard Template Library (STL) [153] and it talks of Sequence

and Associative Container, where Java says Collection and Map.

Collection The Array is the most basic form of a container. It represents an allocated
area in the computer’s Random Access Memory (RAM). A Vector implements a dynamically
growable array of objects. The Stack class extends the vector class and represents a Last-

In-First-Out (LIFO) stack of objects. A collection that contains no duplicate elements is

4.1 Paradigm and Language 77

called a Set. Unlike sets, Lists typically allow duplicate elements. Synonyms for list are

Ordered Collection and Sequence.

Objects that can generate a series of elements, one at a time, implement the Enumeration
interface. Successive calls to the nextElement method return successive elements of such a
series. In recent releases of the Java Development Kit (JDK) [112], Iterator takes the place
of enumeration, in the collections framework. An iterator over a collection differs from an
enumeration in that it allows the caller to remove elements, with well-defined semantics,

from the underlying collection during an iteration.

Map A Map (also called Dictionary or Table) is an object that maps Keys to Values. It
cannot contain duplicate keys; each key can map to at most one value. Java offers two kinds
of a map: Hash Map and Hash Table. The former is roughly equivalent to the latter, except
that it permits null values and the null key [112, 120].

Tree A Tree, or more exact Tree Node, is a further kind of container. Many tree nodes, in
hierarchical order, may form a tree. A tree node may represent a Leaf with no children or

a Branch with one or more children. The top-most tree node is usually called Root.

Falsifying Polymorphism

Problems can occur when inheriting containers. This is now demonstrated on a Java example

adopted from [222].

A class ExtendedHashtable extends the standard container Hashtable (figure 4.13). The
ExtendedHashtable overrides the put method and lets it do two calls to the put method of
the superior class Hashtable, the second of these calls adding the letter s to the key.

A first object of type FatendedHashtable gets filled by calling the put method which adds
two identical element values with the two different keys ball and balls to the container.
When the container is full, a new one with extended size gets created and all values of the

old have to be copied into the new container, which is again of type ExtendedHashtable.

If the put method is now used to accomplish this, a falsified container with more elements
than the original one will be retrieved. The copying of the first element ball results in two

elements ball and balls, placed in the new container. The copying of the second element

78 4 Logical Architecture

Hashtable
put(Object key, Object value)

ExtendedHashtable old new
put(Object key, Object value) | = ball, balls ball, balls, ballss

super.put(key, value);
super.put(key + “s”, value); copy

Figure 4.13: Falsified Contents with Container Inheritance

balls adds two further elements balls and ballss, whereby the balls key stemming from the

copying of the first element gets overwritten.

This example demonstrates only the principle of how the automatic size extension of inher-
ited container objects with element copying using container-owned methods can incorrectly
modify the container contents. The Java language’s Hashtable class uses a slightly different
mechanism, handing over the hashtable object as parameter of a copy constructor which
internally calls a putAll method which finally calls the put method. Other OOP languages
may use different mechanisms. Of course, there are workarounds to avoid the described
troubles. But as a matter of fact, container inheritance may — due to polymorphism — cause

unpredictable behaviour leading to falsified container contents.

The language and interpreter introduced in chapters 9 and 10 base on just one container
structure for knowledge representation, that covers many of the traditional forms of con-

tainers.

Conclusion

As could be seen in the previous sections, OOP contributed many new concepts to software

design, thus trying to improve SPP. Most importantly, SPP data structures (struct, record)

4.2 Pattern 79

got extended towards the Class which does not only hold data (attributes), but also op-
erations (methods). This brought with the concept of Encapsulation, which permits only
special methods of an Object (class instance) to access the data (properties) of that same
object. The next innovation was Inheritance, which allows a class to reuse the attributes
and methods of its super class(es). Finally, inheritance was used to introduce the concept
of Polymorphism, which lets objects react differently, depending on the class they were

instantiated with.

All of these concepts were true innovations as compared with traditional SPP techniques.
However, they have their own drawbacks: growth of the number of dependencies within a
system (links between classes), caused by the bundling of attributes and methods; fragile
base class problem; falsified container contents with container inheritance. This work will not
just revise these concepts, but turn them upside down. Data (attributes) and operations/
algorithms (methods) are not bundled any longer; the resolution of inheritance relationships
at runtime gets eliminated and with it polymorphism; container inheritance is not necessary
any longer, since only one global container structure (knowledge container) is used in a

system. More on that in part II of this work.

4.2 Pattern

The previous sections investigated basic concepts offered by today’s programming languages
and -paradigms. The following and all later sections of this chapter describe design tech-
niques that belong to a higher conceptual level. Patterns, in a more correct form called
Software Patterns, are the first technique dealt with. They became popular through Object
Oriented Programming (OOP), but their use is not limited to OOP languages. Patterns
represent solutions for recurring software design problems and can be understood as rec-
ommendations for how to build software in an elegant and efficient way. In the past, more

detailed definitions have been given by meanwhile well-known authors.

Christopher Alexander, an architect and urban planner, writes [3]: Each pattern describes
a problem which occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice. He gave this definition primarily for
problems occuring in architecture, construction, and urban/regional planning, but it can
be applied in the same manner to software design, as done first by Ward Cunningham and

others [148].

80 4 Logical Architecture

The systems designer Swift [73] sees a pattern as: essentially a morphological law, a re-
lationship among parts (pattern components) within a particular context. Specifically, a
pattern expresses a relationship among parts that resolves problems that would exist if the
relationship were missing. As patterns express these relationships, they are mot formulae

or algorithms, but rather loose rules of thumb or heuristics.

The Gang of Four (GoF) (Erich Gamma et al.) applied Alexander’s definition to object ori-
ented software and created a whole catalogue of design patterns [108]. After them, patterns
are: Structured models of thinking that represent reusable solutions for one-and-the-same
design problem. They shall support the development, maintenance and extension of large
software systems, while being independent from concrete implementation languages. The
experts identified four basic elements of each pattern: Name, Problem, Solution and Con-

sequences (advantages and disadvantages).

For Frank Buschmann et al., software patterns contain the knowledge of experienced software
engineers and help to improve the quality of decision making [41]. In his opinion, they are
basic solutions for problems that already occurred in a similar way before. Therefore, the

author talks of Problem Solution Pairs.

Martin Fowler means that: A pattern is some idea that already was helpful in o practical
context and will probably be useful in other contexts, too. [97]. After him, patterns, however

they are written, have four essential parts: Context, Problem, Forces and Solution.

Depending on their experience, software developers can produce good or bad solutions, in
every domain. One possibility to improve less well-done designs or to extend legacy systems
are the so-called Anti-Patterns (telling how to go from a problem to a bad solution), or
the contrasting Amelioration Patterns (telling how to go from a bad solution to a good
solution) [148]. Both help finding patterns in wrong-designed systems and give advice for

their improvement.

There are efforts to combine patterns to form a Pattern Language, also called Pattern
System [41]. Such systems describe dependencies between patterns, specify rules for pattern
combination and show how patterns can be implemented and used in software development

practice.

Several schemes of Pattern Classification exist. One possible is shown in figure 4.14. Consid-
ering the level of abstraction (granularity), it distinguishes between Architectural-, Design-
and Idiomatic patterns [41]. Design patterns, in turn, are divided after their functional-

ity (problem category) into Creational-, Structural- and Behavioural patterns [108]. The

4.2 Pattern 81

pattern
\ | |
architectural design idiomatic
\ \ \
creational structural behavioural

Figure 4.14: Software Pattern Classification

Wikipedia Encyclopedia [60] mentions three further problem categories: Fundamental-,
Concurrency- and Real-time patterns. Other criteria (dimensions) of classification exist.
Fowler introduces a completely different category which he calls Analysis Patterns [97).
These are applicable early in the software engineering process (chapter 2). And he defines
patterns that are more often used for describing the modelling Language than the actual

Models as Meta Model Patterns.

In the following sections, a greater number of known patterns will be described briefly. They
form the scientific basis for the ideas following in part II of this work and some of them appear
in a modified form in the language and interpreter introduced in part III. Chapter 7 moreover
introduces a new pattern systematics for which it references common patterns as introduced
here. However, since the next sections do not want to copy the work accomplished by the
above-mentioned authors, they refer to the corresponding literaric source for more detailed

explanation.

4.2.1 Architectural

Architectural Patterns are templates for the gross design of software systems. They describe

concrete software architectures and provide basic structuring (modularisation) principles.

82 4 Logical Architecture

Layers

The Layers pattern [41] is one of the most often used principles to subdivide a system into
logical levels. One variant was shown in figure 4.1, at the beginning of this chapter. It
contained the three layers Presentation, Domain Logic and Data Source. A more general
illustration can be seen in figure 4.15. It shows a client using the functionality encapsulated
in a layer. That top-most layer delegates subtasks to lower-level layers which are specialised
on solving them. Another well-known example making use of this pattern is the ISO OSI

model as introduced in section 3.11.

uses
client }—{ layer n }* - ‘ highest abstraction level
| provides services
~ |tolayern
AN
\ | delegates subtasks
to layer n-2

layern -1 }(

layern -2

layer 1 F - ‘Iowestabstraciion level

Figure 4.15: Layers Pattern

One variant of this pattern, mentioned by Buschmann [41], is the Relazed-Layered-System.
It permits a layer to not only use the services of its direct base layer, but also of yet lower-

situated layers. The base layer, in this case, is called transparent.

The ontology examples in chapter 7 are organised according to the Layers pattern. Their

layers represent levels of growing granularity.

Layer Supertype

The Layer Supertype pattern [101] is a rather simple but quite useful one. It assumes that

a system is structured using the Layers pattern. What the pattern proposes is to add a

4.2 Pattern 83

(possibly abstract) class that all other classes in its layer inherit from (figure 4.16). The
reason is that basic functionality common to all classes in a layer, for example persistence-

or logging capabilities, can be provided once by the supertype, such avoiding redundancies.

sub_type_1

common_attribute : int attribute 2 : int

attribute 3 : int

| swpertpe

Figure 4.16: Layer Supertype Pattern

The language introduced in chapter 9 does not use inheritance and thus cannot use super
knowledge templates in the meaning of the Layer Supertype pattern. Nevertheless, the
pattern is important because of its idea to categorise similar knowledge, such as all templates

of: a Textual User Interface (TUI), a Graphical User Interface (GUI), a Domain Model etc.

Domain Model

One of the three layers in figure 4.1 shown at the beginning of this chapter is the Domain
Model. Fowler [101] proposed it as singular pattern because of its importance in large-scale
business systems. Figure 4.17 shows an imaginary business domain model. The actual focus,
however, should not be put on the inside structure of this example model, but on the fact

that the domain model represents a layer on its own.

This separation cannot be found in all systems and in fact, it does not make sense for all
systems. Small solutions let their user interface or application control, respectively, access a

database directly which avoids the rather big effort of creating a special domain model. But

84 4 Logical Architecture

object_1 object_2
- object_3 + method()

/N

object_3 object_2_1 object_2 2
+method_1() - attribute_1 - attribute
+ method_2() - attribute_2
+ method_3() + method()

method_2()

Figure 4.17: Domain Model Pattern

the larger the system to be created and the more clear the desired architecture shall be, the

more recommendable it is to use the Domain Model pattern.

It will be helpful to have heard about this pattern when reading chapter 8 dealing with

domain-, user interface- and other models and their translation into each other.

Data Mapper

Besides the Domain Model, figure 4.1 contained a layer called Data Source which may for
example represent a database. Normally, both layers need to exchange data. Modern systems
use OOP methods to implement the domain model. Database models, on the other hand, are
often implemented on the basis of an Entity Relationship Model (ERM). In order to avoid
close coupling and a mix-up of both layers, the introduction of an additional Data Mapper
layer [101] in between the two others may be justified (figure 4.18). The most important
idea of this pattern is to abolish the interdependencies of domain- and persistence model

(database).

The dashed arrows in figure 4.18 indicate dependencies. The data mapper layer knows the
domain model- as well as the data source layer, via unidirectional relations. Its task is to

translate between the two, in both directions. Domain model and data source know nothing

4.2 Pattern 85

<cinterface>>
object finder
+ find(id : long)

/N

object_mapper

Figure 4.18: Data Mapper Pattern

from each other. Each domain model class knows its appropriate object_finder interface but
does not know the implementation of the same. That is, persistence- and data retrieval
mechanisms are hidden in front of the domain model. The object-mapper implementation
is part of the mapping package and also implements all finder methods. It maps data of the

received result sets to the special attributes of the domain model objects.

The Mediator pattern [108] is similar to the Mapper, in that it is used to decouple different
parts of a system. Fowler [101] writes: ... the objects that use a mediator are aware of
it, even if they aren’t aware of each other; the objects that a mapper separates aren’t even

aware of the mapper.

Although the Data Mapper pattern is very helpful at implementing OO systems, two things
are to be criticised: Firstly, since the object_finder relies on functionality specific to the
retrieval of persistent data, it does actually belong into the data mapper layer what, if done,
would create bidirectional dependencies between the domain model- and data mapper layer.
But also with the object_finder remaining in the domain model layer, dependencies are not
purely unidirectional. It is true that from an OO view, they are. Internally, however, a
super class or interface relates to its inheriting classes, so that it can call their methods to

satisfy the polymorphic behaviour.

Secondly, the layers do not truly build on each other. Taken an architecture similar to the

86 4 Logical Architecture

one in figure 4.1, consisting of the following five instead of only three layers:

1. Presentation
2. Application Process
3. Domain Model
4. Data Mapper
5. Data Source
. the application process does not only access the domain model layer, it also has to manage

(create and destroy) the objects of the data mapper layer. In other words, it surpasses

(disregards) the domain model layer when accessing the data mapper layer directly.

Chapter 8 will describe how a strict separation of state- and logic knowledge allows to access

and translate runtime models unidirectionally.

Data Transfer Object

data_transfer_object

- attribute_1

- attribute_2

domain_object_1 domain_object_2
- attribute_1 - attribute_2

- = + assemble()

+ disassemble()

Figure 4.19: Data Transfer Object Pattern

It is a well-known fact that many small requests between two processes, and even more
between two hosts in a network need a lot of time. A local machine with two processes has

to permanently change the Program Context; a network has a lot of Transfers. For each

4.2 Pattern 87

request, there is a necessity of at least two transfers — the Question of the client and the
Answer of the server. Transfer methods are often expected to deliver common data such
as a Person’s address, that is surname, first name, street, zip-code, town and so on. These
information is best retrieved by only one transfer call. That way, the client has to wait only
once for a server response and the server does not get too many single tasks. All address

data (in this example) would best be packaged together and sent back to the client.

A scenario of that kind is exactly what the Data Transfer Object pattern [101] proposes a
solution for: A central Assembler object takes all common data of the server’s domain model
objects and assembles them together into a special Data Transfer Object (DTO), which is
a flat data structure (figure 4.19). The server will then send this DTO over network to the
client. On the client’s side, a similar assembler takes the DTO, finds out all received data
and maps (disassembles) them to the client’s domain model. In that manner, a DTO is able

to drastically improve the communication performance.

Both, Data Mapper- and DTO pattern translate one model into another. Due to this

similarity, chapter 8 will try to merge them into a common Translator architecture.

Model View Controller

After having had a closer look at design patterns for persistence (Data Mapper) and com-
munication (Data Transfer Object), this section considers the presentation layer of an ap-
plication (figure 4.1), which is often realised in form of a Graphical User Interface (GUI).
Nowadays, the well-known Model View Controller (MVC) pattern [41, 101] is used by a
majority of standard business applications. Its principle is to have the Model holding do-
main data, the View accessing and displaying these data and the Controller providing the
workflow of the application by handling any action events happening on the view (figure
4.20). This separation eases the creation of applications with many synchronous views on

the same data. Internally, the MVC may consist of design patterns like:

- Observer (section 4.2.2) which notifies the views about data model changes
- Strategy [108] which encapsulates exchangeable functionality of the controller
- Wrapper (section 4.2.2) which delegates controller functionality to the Strategy

- Composite (section 4.2.2) which equips graphical views with a hierarchical structure

Some MVC implementations like parts of the Java Foundation Classes (JFC) use a simpli-

fied version not separating controllers from their views. The Microsoft Foundation Classes

88 4 Logical Architecture

Figure 4.20: Model View Controller Pattern

(MFC) C++ library calls its implementation Document- View.

Besides the above-mentioned patterns Data Mapper and DTO, MVC is the third one getting

merged into a common Translator architecture, in chapter 8.

Hierarchical Model View Controller

There exist several extensions of the MVC pattern, one of them being the Hierarchical Model
View Controller (HMVC) [43]. It combines the patterns Composite (section 4.2.2), Layers
(section 4.2.1) and Chain of Responsibility (section 4.2.2) into one conceptual architecture
(figure 4.21). This architecture divides the presentation layer into hierarchical sections
containing so-called MVC Triads. The triads conventionally consist of Model, View and
Controller, each. They communicate with each other by relating over their controller object.

Following the Layers pattern, only neighbouring layers know from each other.

As a practical example, the upper-most triad could represent a graphical Dialogue and the
next lower one a Panel. Being a container, too, the panel could hold a third triad like
for example a Button. Events occuring at the button are then normally processed by the
corresponding controller belonging to the button’s triad. If, however, the button controller

cannot handle the event, that is forwarded along the chain of responsibility to the controller

4.2 Pattern 89

| _view == = controllr

parent

parent

Figure 4.21: Hierarchical Model View Controller Pattern

of the higher-next layer. If also the panel controller does not know how to handle the event,

the final responsibility falls to the controller of the dialogue’s triad.

The HMVC is similar to the Presentation Abstraction Control (PAC) pattern [41]. A PAC
Agent is comparable to an HMVC Triad.

Chapter 7 will apply the principle of Hierarchy not only to logic- (controller), but also to

user interface- (view), domain- and further models.

Microkernel

The Microkernel pattern [41] allows to keep a system flexible and adaptable to changing re-
quirements or new technologies. A minimal functional Kernel gets separated from extended
functionality. The kernel may call internal- or external servers (figure 4.22) to let them solve
special tasks which do not belong to its own core responsibility. Internal servers, also called

Daemons, were already mentioned in section 3.6.

This pattern provides a Plug € Play environment and serves as base architecture for many
modern Operating Systems (OS). Andrew S. Tanenbaum recommends its use as well [304].
And also the interpreter that will be described in chapter 10 uses this pattern in its own

adapted form.

4 Logical Architecture

calls sends
service request
‘ client }—> adapter external_server
‘ do_task() ‘ call_service() receive_request()

communication

create_request()

dispatch_request()

initialises

calls

execute_service()

nel

internal_server

execute_mechanism()

receive_request()

init_communication()

execute_service()

find_receiver()

create_handle()

send_message()

call_internal_server()

Figure 4.22: Microkernel Pattern

transmits transmits
messag!
client_side_proxy broker server_side_proxy
pack_data() main_event_loop() pack_data()
unpack_data() update_repository() unpack_data()
send_request() register_service() call_service()
return acknowledge() send_response()
find_server()
find_client()
forward_request()
forward_response()
calls
uses uses
calls n n calls
api api
client bridge server
call_server() pack_data() initialise()
start_task() unpack_data() enter_main_loop()
use_broker_api forward_message() run_service()

transmit_message()

use_broker_api()

Figure 4.23: Broker Pattern

4.2 Pattern 91

Broker

The Broker pattern [41] may support the creation of an IT infrastructure for distributed
applications. It connects decoupled components which interact through remote service in-
vocations (figure 4.23). The broker is responsible for coordinating all communication, for

forwarding requests as well as for transmitting results and exceptions.

Chapter 10 introduces an interpreter program being able to act as broker.

Pipes and Filters

Systems that process streams of data may make use of the Pipes and Filters pattern [41].
It encapsulates every processing step in an own Filter component and forwards the data
through channels which are called Pipeline (figure 4.24). The data forwarding can follow

various scenarios:

filter_2
decode encode
encode()
decode()
encode decode
filter_1 filter_3
encode() encode()
decode() decode()

encode decode

Figure 4.24: Pipes and Filters Pattern

- Push: active filter pushes data to passive filter
- Pull: active filter pulls data from passive filter
- Mized Push-Pull-Pipeline: all filters may push or pull data

- Independent Loops: all filters are active and access pipeline data

92 4 Logical Architecture

Families of related systems can be formed by changing the single filter positions. Special
communication filters are also used in the interpreter program of chapter 10. Its filters
belong to neither of the above-listed forms of data forwarding, because they are all passive,

controlled from an outside entity which is not a filter itself.

Reflection

The Reflection pattern [41] (also known under the synonyms Open Implementation or Meta-
Level Architecture) provides a mechanism to change the structure and behaviour of a soft-
ware system dynamically, that is at runtime, which is why that mechanism is sometimes
called Run Time Type Identification (RTTI). A reflective system owns information about

itself and uses these to remain changeable and extensible.

meta_object_1 meta_object_2 meta_object_protocol

) retrleve.s modifies
information

Figure 4.25: Reflection Pattern

Reflective information about something is called Meta Information. Therefore, the level
above the Base Level in figure 4.25 is labelled Meta Level. The base level depends on the
meta level, so that changes in the meta level will also affect the base level. All manipulation
of meta objects happens through an interface called Meta Object Protocol (MOP), which is
responsible for checking the correctness of- and for performing a change. If a further level
holds information about the meta level, then that additional level is called Meta Meta Level,

and so forth.

4.2 Pattern 93

Many examples of meta level architectures exist. In his book Analysis Patterns [97], Fowler
uses them extensively. He talks of Knowledge Level (instead of meta level) and Operational
Level (instead of base level). Elements of the Unified Modeling Language (UML) are defined
in an own meta model [235]. And the principles of reflection are also supported by several

programming languages, such as Smalltalk [202] and Java [112].

Classes (types) in a system have a static structure, as defined by the developer at design time.
Normally, most classes belong to the base level containing the application logic. As written
before, one way to change the structure and behaviour of classes at runtime is to introduce
a meta level providing type information, in other words functionality that all application

classes need. This helps avoid redundant implementations of the same functionality.

Looking closer at functionality, it turns out that some basic features like persistence and
communication occur repeatedly in almost all systems, while other parts are very specific
to one concrete application. Traditionally, the application classes in the base level have to
cope with the general system functionality although that is not in their original interest. It
therefore seems logical to try to divide application- and system functionality. Chapter 6 will

deal with this thought in more detail.

Broken Type System

This section does not describe another pattern. Instead, it wants to come back to reflective
mechanisms as described before and elaborate their negative effects a bit more. Although
the following review concentrates on the example of Java, many points surely count for other
OO languages as well. Languages like Smalltalk or the Common Lisp Object System (CLOS)
offer reflective mechanisms [41]. The C++ Standard Library, also known as libstdc++ [195],
has a type_info class providing meta information that C++ innately does not have. In the
Java framework [112], finally, the basic java.lang.* package contains the top-most super
class java.lang.Object. All other classes in the framework inherit from it. Additionally, the
package contains a class java.lang. Class which, among others, keeps reflective (meta) type

information about a Java class’:
- Package
- Name

- Superior Class

- Interfaces

94 4 Logical Architecture

- Fields

- Methods

- Constructors
- Modifiers

- Member Classes

runtime dynamics design time statics

calls native
procedures java.lang.Class

keeps
instances

keeps - .
instances java.lang.Object
getClass()

Figure 4.26: Java Type System

Via the getClass() method which they inherit from java.lang. Object (figure 4.26), all Java
classes have access to that reflective information in their meta class. The meta class
java.lang. Class itself uses so-called native methods to access the information in the Java
Virtual Machine (JVM). The JVM operates on a level underneath the actual application,
close to the Operating System (OS). It interprets the Java application source code and
resolves all object-oriented- into procedural structures, and finally low-level system instruc-
tions. All runtime objects, that is class instances, are hold in dynamic structures internal
to the JVM. That is why native methods need to be used to access and change the runtime

structure or behaviour of objects.

One problem that becomes obvious when inspecting figure 4.26 is the existence of a Bidi-

rectional Dependency (Circular Reference). The two sub dependencies causing it are:

1. Inheritance of java.lang.Class from java.lang. Object which is due to the rule that all

Java classes need to inherit from the top-most framework class

4.2 Pattern 95

2. Association from java.lang.Object to java.lang.Class which enables every object to

access its meta class using the getClass() method

The avoidance of circular references is one of the most basic principles of computer program-
ming (section 4.2.2). The disadvantage of bidirectional dependencies between meta and basic
level is also mentioned by Buschmann [41]. If meta classes in the kind of java.lang.Class
define the structure and behaviour of all basic classes inheriting from java.lang. Object, then
those meta classes in turn should not inherit from java.lang. Object themselves. The new
language described in chapter 9 permits applications to be programmed without bidirec-
tional dependencies. Functionality that could be put into a meta level is provided by a

low-level interpreter instead (chapter 10).

Another problem is the mixed and redundant storage of meta information which Jonathon
Tidswell [132] even calls a Broken Type System. He writes: A careful examination of the
classes in the standard runtime will show that they are not strictly instances of java.lang. Class
(hint: statics). Gilbert Carl Herschberger II [132] calls the separation of reflection and
wrappers an Inconsistent Design. Java classes are based on many different kinds of type

information:

- Structure applied by the JVM through the usage of the class keyword
- Meta information supplied by the java.lang.Class class

- Reflective information provided by java.lang.reflect. *

- Wrapper classes for primitive types in java.lang. *

- Dynamically created array classes, without having an array class file

The fact that the java.lang.Class class which is to provide meta information about classes
is a Class itself is an antagonism. It is true that that meta class is made final to avoid
its extension by inheriting subclasses. But correctly, it should not be a class at all. Yet
how can this paradoxon be resolved? Obviously, one of the two dependencies between
java.lang. Object and java.lang.Class needs to be cut. But then either the java.lang. Object
class would not be able to access its meta information anymore or the java.lang.Class class
would not be available as runtime object to other polymorphic data structures. One solution
could be to merge both classes, so that each object, by default, has the necessary methods to
access its meta information. But as it turns out, this would not be a real solution, just a Shift
of the problem to another level. As mentioned above, the JVM keeps all instances (objects)

in internal, dynamic structures. If objects were allowed to access these internal structures

96 4 Logical Architecture

via native methods (procedures), a similar kind of bidirectional dependency, between the

JVM and its stored objects, would occur. Gilbert Carl Herschberger IT writes [132]:

A purist Super Platform does not bleed into the Sub Platform. In practice, this
doesn’t make people happy because transition is more difficult. Java itself is
a super platform. It bleeds into the sub platform in numerous ways, including
Java Native Interface (JNI) and Runtime.exec(), leaving us with a security

headache. Reasonable security can be achieved; but, it is far from automatic.

One finally has to ask whether the usage and manipulation of meta information is really
necessary at alll If objects did not have a static structure consisting of certain attributes
and methods, as defined by the software developer at design time, but instead based on a
uniform, dynamically changeable structure — the need to use reflective mechanisms might

disappear. More on this topic in chapter 6.

There are other Java-related points to be criticised, that have their reason in the application
of the Reflection pattern. Although it is worth noting they exist, these are not explained
in detail here, since this document wants to focus on general concepts. Gilbert Carl Her-
schberger II [132] mentions the problematic issue of Pre-Conditions, leading to corresponding
Assumptions. After him, such work-arounds were necessary to break circular references in

Java:

- Each JVM must pre-define an Internal Meta Class, implemented in machine code and
not available as Java bytecode in a class file. The java.lang.Class as base meta class

for all Java classes depends on that internal meta class and assumes its existance.

- A JVM pre-defines one Primordial Class Loader, implemented in machine code and
resolved at compile-time. Since additional class loaders need to know their meta class
when being created, they have to assume the primordial class loader exists so that,

using it, their meta class can be created first.

Further, Jonathon Tidswell [132] is of the opinion that there are a number of security issues

related to the design of Java, for example:

- Global names not local references are used for security

- Wrappers and names are used for reflection

Even though most of the issues raised in this section are rather Java-specific, many of them

apply to other programming languages as well. Smalltalk [202] and CLU [198], for example,

4.2 Pattern 97

make primitive types look like classes and do not need special Wrapper classes like Java. But
when digging deep enough, one will find that this is Syntactic Sugar, as Peter J. Landin used
to call additions to the syntax of a computer language that do not affect its expressiveness

but make it sweeter for humans to use [60].

The interpreter described in chapter 10 uses only one single type called its general Knowledge
Schema (chapter 7), and thus circumvents any troubles with broken type systems. Reflec-
tive techniques are not needed because general functionality contained in the interpreter is
separated from domain-specific knowledge which is stored externally to the interpreter, in a

special language (chapter 9).

4.2.2 Design

Gamma et al. [108] define a design pattern as: description of collaborating objects and
classes which are taylored to solve a general design problem in a special context. Mostly,

patterns are in relation to each other. They can be combined to master more complex tasks.

Command

client invoker } }

execute()

- 1, receiver
4% receiver I _

‘ action() ‘ state

L - - - - - - — — = execute()

receiver.action()

Figure 4.27: Command Pattern

The Command pattern [108], also known as Action or Transaction, sometimes also Signal,

98 4 Logical Architecture

encapsulates a command in form of an object. That way, operations can get parameterised;
they can be put in a queue, be made undone or traced in a log book. Figure 4.27 shows the

structure of the pattern.

Chapter 8 uses the idea of representing operations and algorithms (logic knowledge) as

independent models, similar to encapsulated commands.

Wrapper

The Wrapper pattern [108] allows otherwise incompatible classes to work together. It can
be seen as skin object enclosing (wrapping) an inner core object, to which it provides access.
In other words: It adapts the interface of a class which is why Gamma et al. call the pattern
Adapter. As can be seen in figure 4.28, this pattern makes heavy use of Delegation, where

the Delegator is the adapter (or wrapper) and the Delegatee is the class being adapted [148].

target
client e

target

request()

‘ wrapper }M>‘ contents ‘
|

[request)) | | |specific_request()
|

contents.specific_request()

Figure 4.28: Wrapper Pattern

Knowledge templates created in the language described in chapter 9 wrap the more fine-

granular templates they consist of.

4.2 Pattern 99

Whole-Part

Whenever many components form a semantic unit, they can be subsumed by the Whole-Part
pattern [41]. It encapsulates single part objects (figure 4.29) and controls their cooperation.
Part objects are not addressable directly. Almost all software systems contain some com-
ponents or sub systems which could be organised by help of this pattern. In some way, it
is quite similar to the previously introduced Wrapper pattern, only that not just one but

many objects are wrapped.

part_1

service_1_a()

service_1_b()

calls

service combines
[clem] whole part 2
do_task() service_a()

I
| service_2_a()
service_b() | service_2_b()
|
|
|
|
—= part_n
service_n_a()
service_n_b()

Figure 4.29: Whole-Part Pattern

The principal structure of the new language introduced in chapter 9 is based on the Whole-
Part pattern. One knowledge template (whole) may consist of zero, one or many other

templates (parts).

Composite

A hierarchical object structure, also called Directed Acyclical Graph (DAG) or Tree, can
be represented by a combination of classes called Composite pattern [108]. It describes a
Component that may consist of Children (figure 4.30), which makes it comparable to the
Whole-Part pattern. The difference is that the Composite is a more generalised version,

with a dynamically extensible number of child (part) objects. The Composite is a pattern

100 4 Logical Architecture

based on Recursion, which is one of the most commonly used programming techniques at
all. The pattern’s split into Leaf- and Composite sub classes helps distinguish primitive-

from container objects. A composite tree node holds objects of type Component.

client I

operation()

add(p : component)

remove(p : component),

get(p : int) : component|

children

‘ leaf ‘

‘ operation() ‘ operation()

7 add(p : component)

a remove(p : component)|

get(p : int) : component|

for each child in children:
child.operation()

Figure 4.30: Composite Pattern

The knowledge schema introduced in chapter 7 has container capabilities, like the composite
pattern. It does, however, not distinguish between composite and leaf nodes, and not use

inheritance.

Chain of Responsibility

The Chain of Responsibility pattern [108] is similar to the Composite, in that it represents a
recursive structure as well. Objects destined to solve a task are linked with a corresponding
Successor (figure 4.31), such forming a chain. If an object is not able to solve a task, that

task is forwarded to the object’s successor, along the chain.

The pattern found wide application, for example in help systems, in event handling frame-
works or for exception handling. Its Handler class is known under synonyms like FEvent
Handler, Bureaucrat or Responder. Frequently, the pattern gets misused by delegating mes-
sages not only to children but also to the parent of objects. The Hierarhical Model View

Controller (HMVC) pattern (section 4.2.1) is one example for this. It causes unfavourable

4.2 Pattern 101

handle_request()

successor

concrete_handler

handle_request()

Figure 4.31: Chain of Responsibility Pattern

bidirectional dependencies and leads to stronger coupling between the layers of a framework,

because parent- and child objects then reference each other.

Much like state knowledge (data structures) is representable by the knowledge schema being
described in chapter 7, also logic knowledge (algorithms, operations) is. A compound logic
model may contain further logic models, which it calls or sends as signal in a manner similar

to the Chain of Responsibility principle.

Observer

Another pattern that found wide application is the Observer [108], an often-used synonym
for which is Publisher-Subscriber. It provides a notification mechanism for all objects that
registered as Observer at a Subject in whose state changes they are interested, leading to

an automatic update of all dependent objects (figure 4.32).

Similar notification mechanisms are used for Callback event handling in frameworks (section
4.2.4), where the framework core calls functionality of its extensions. The Model View
Controller- (MVC) (section 4.2.1) uses the Observer pattern to let the model notify its
observing views about necessary updates (figure 4.33). The disadvantage of the Observer

pattern is that it relies on bidirectional dependencies, so that circular references can occur,

102 4 Logical Architecture

. observers
subject observer

attach(p : observer)

detach(p : observer)
notify() ~

for each o in observel

o.update()
" subject
_subject _observer
subject_state . observer_state
set_state() > 7 |update()
~ /

get_state() N ,

return subject_state ‘ ‘observerisiale = subject.get_state()

Figure 4.32: Observer Pattern

when a system is not programmed very carefully.

The new pattern systematics presented in chapter 7 classifies the Observer as not recom-
mendable pattern. The language and interpreter described in chapters 9 and 10 do avoid its

usage.

Bidirectional Dependency

Bidirectional References are a nightmare for every software developer. They cause Inter-
Dependencies so that changes in one part of a system can affect multiple other parts which
in turn affect the originating part, which may finally lead to cycles or even endless loops.
Also, the actual program flow and effects of changes to a system become very hard to trace.
Therefore, the avoidance of such dependencies belongs to the core principles of good software

design.

A Tree, in mathematics, is defined as Directed Acyclic Graph (DAG), also known as Oriented
Acyclic Graph [231]. It has a Root Node and Child Nodes which can become Parent Nodes
when having children themselves; otherwise they are called Leaves. Children of the same
node are Siblings. A common constraint is that no node can have more than one parent,

as [143] writes and continues: Moreover, for some applications, it is necessary to consider

4.2 Pattern 103

. update
subject - observer

attach(p : observer) update()
detach(p : observer)

notify() R

view
model
controller create
attach |initialise(p: model))
display
get_state |create_controller()
model - controller
| display()
subject_state model
| update()
set_state() view
et_state() atiach - ise(model, view)
getstate) | do_service 2
do_service() handle_event()
update()

Figure 4.33: MVC- using Observer Pattern

a node’s children to be an ordered list, instead of merely a set. A graph is acyclic if every

node can be reached via exactly one path, which then also is the shortest possible.

In computing, trees are used in many forms, for example as Process Tree of an operating
system [258, 149, 313] or as Object Tree of an object-oriented application. They represent
Data Structures in databases or file systems and also the Syntazx Tree of languages. The
violation of the principle of the Acyclic Graph can lead to the same loops, also called Circular
References, as mentioned above, which can result in the crossing of memory limits and is a
potential security risk. Therefore, one of the main aims in the creation of the new concepts

introduced in part II of this work was the avoidance of bidirectional relations.

4.2.3 ldiomatic

An Idiom is a pattern on a low abstraction level. It describes how certain aspects of com-
ponents or the relations between them can be implemented using the means of a specific
programming language. Idioms can thus be used to describe the actual realisation of design
patterns. Besides the Counted-Pointer pattern, Buschmann [41, p. 377] also categorises

Singleton, Template Method, Factory Method and Envelope-Letter [62] as Idiom.

104 4 Logical Architecture

Template Method

The Template Method pattern [108], also called Hook Method, is an abstract definition of
the Skeleton of an algorithm. The implementation of one or more steps of that algorithm is

delegated to a sub class (figure 4.34).

abstract_class
template_method)— = — — — — primitive_operation_1()
primitive_operation_1()
primitive_operation_2() primitive_operation_2()

concrete_class

primitive_operation_1()

primitive_operation_2()

Figure 4.34: Template Method Pattern

The idea of algorithm (method) templates was taken over in the design of the new lan-
guage described in chapter 9. The single template parts, however, are not inherited but
implemented in part templates referenced by their corresponding whole template, which is

actually more similar to the previously described Whole-Part pattern (section 4.2.2).

Counted Pointer

The Counted Pointer pattern [41] supports memory management in the C++ programming
language, by counting references to dynamically created objects (figure 4.35). That way,
it can avoid the destruction of an object through one client, while still being referenced by
other clients. Also, it helps avoiding memory leaks by cleaning up forgotten objects in the

style of a Garbage Collector.

Since all of its knowledge is kept in just one huge tree structure, the interpreter introduced in

chapter 10 has memory management and reference counting capabilities built in by default.

4.2 Pattern 105

handle body
- body : Body ref_counter : int
operator->() service()
handle(...) - body(...)
handle(handle&) - ~body()
operator=()
~handle()

Figure 4.35: Counted Pointer Pattern

Singleton

Whenever an object-oriented system wants to ensure that only one instance of a certain class
exists, the Singleton pattern [108] can be used. It essentially is a class which encapsulates
its instance’s data and provides global access to them, via static, sometimes called class

methods (figure 4.36).

A Registry object as described by Fowler [101] often uses the Singleton pattern, to be unique
and to become globally accessible. Similarly do many so-called Manager objects, for example

change managers which are also responsible for the caching of objects.

Global, that is static access — the main purpose of the Singleton pattern, is its main weakness,
at the same time. One obvious solution to avoid singleton objects could be to forward global
information as instances from component to component, possibly using an own Lifecycle
Method (section 4.3.2). This approach, however, might bring with a rather large number
of parameters to be handed over. It therefore seems easier to use another alternative — the

central tree of knowledge instances, as done in the interpreter of chapter 10.

106 4 Logical Architecture

singleton

- instance : singleton
- singleton_data

- singleton() : singleton

+instance() : singleton— — — — — — — return the only instance

+ singleton_operation()

+ get_singleton_data()

Figure 4.36: Singleton Pattern

Global Access

Statically accessible (manager) classes are often introduced to frameworks (section 4.2.4)
because some instances can not be reached anymore along normal object associations. With
instance models having a tree structure being directed and acyclic, each object can be
reached anytime in a consistent way, by navigating down the tree branches. A pure instance
tree in a computer’s Random Access Memory (RAM) represents an unidirectional structure

that permits data access along well-defined paths.

Global access via static types, on the other hand, allows any instance to address data in
memory directly, which not only complicates software development and maintenance, but,
due to uncontrollable access, is a potential security risk. The usage of static objects accessible
by any other part in a system is an Anti Pattern to Inversion of Control (IoC) (section 4.3.1),
highly insecure and hence undesirable. Chapter 7 does therefore classify all patterns using
global (static) access as not recommendable. And the language and interpreter introduced

in chapters 9 and 10 do avoid their usage.

4.2 Pattern 107

4.2.4 Framework

In the past decade, Software Frameworks have gained in importance. Patterns are consid-
ered their elementary building blocks. Yet while patterns are solutions for recurring design
problems, frameworks represent the base architecture for a family of systems [252]. Because
both concepts depend on each other, frameworks are described within the main section

Patterns.

A Framework essentially is a reusable collection of a number of cooperating abstract and
concrete classes, in a special constellation. It represents an imcomplete software system
which still needs to be extended and instantiated, to be executable. A conventional Library
is used by calling the procedures provided by it; the main part of each application is then de-
signed and realised by the developer. A Framework already represents the actual main part
of a system. Functionality added by the application developer is reversely called and used
by the framework itself. This principle carries the name Callback Mechanism. Extensions

are mostly realised through Inheritance and Polymorphism (section 4.1.15).

But not all parts of a framework are intended to be extended. After W. Pree [252], there
are Static Constraints and Dynamic Parts. Buschmann [41] calls them Frozen Spots and
Hot Spots; the Apache Jakarta Avalon framework [17] labels static parts Contracts. When
the abstract state of a framework is turned into a functioning application by instantiating
its classes, static elements remain unchanged. They form the basic structure for all derived
applications. Application-specific behaviour, on the other hand, is determined by specialising

adaptable framework parts.

The Jakarta Avalon documentation [17] defines a framework as:

1. A supporting or enclosing structure.

2. A basic system or arrangement as of ideas.

It distinguishes between Vertical Market Frameworks which focused on a single industry
like medical systems or telecommunications and would not work well in other industries,
and Horizontal Market Frameworks which were generic enough to be used across multiple
industries. Vertical market frameworks could be built on top of horizontal market frame-

works.

Just like patterns, frameworks provide higher flexibility to software components, prevent

code duplication and lower development efforts [252]. Developers are freed from frequently

108 4 Logical Architecture

reinventing the same solutions and can concentrate on actual application development. The
similar structure of applications that base on the same framework ensures consistency and
eases their maintenance, and also reduces the time it takes for a developer to learn how
the software works. Of course, the necessary adjustment for new developers should not be
underestimated; comprehensive documentation is necessary. But once the principles behind

a framework are understood, one will be able to comprehend any system built upon it.

The Java Development Kit (JDK) [112], for example, offers a number of special Collection
containers (section 4.1.15) which it calls Collection Framework; there is also an Input Method
Framework and so on. Over the years, however, the framework definition has become a bit

fuzzy here-and-there.

The price of framework reusability is Lower Flexibility, which is due to the above-mentioned
static parts. Besides this, applications are subject to the evolution of the underlying frame-
work. However, that disadvantage shouldn’t be too bold, if the framework is designed general

and clever enough.

Framework callback mechanisms rely on Bidirectional Dependencies and bring with all their
disadvantages (section 4.2.2). To explain this briefly: Instances that want to be called by
the framework need to register at a caller before, as was explained in section 4.2.2, on the
example of the Observer pattern. In order to be able to register themselves, callees need to

know about the caller. Once callees are registered, the caller knows about them in turn.

Frequently, statically accessible classes, also called Managers, have to be introduced to a
framework, mostly due to unforeseen requirements. They often use the Singleton pattern
(section 4.2.3) to become unique within a system. Managers of that kind serve as gateway
to certain areas of the framework that are not easily reachable anymore through normal
navigation along object associations. A number of negative effects related to static object

access were already mentioned (section 4.2.3).

Chapter 7 introduces a structure called Knowledge Schema which, although being static, is
capable of representing general knowledge, thus allowing the creation of flexible application
systems. Bidirectional dependencies and global model (object) access are not an issue in
the new language and interpreter introduced in chapters 9 and 10, because any runtime

knowledge model may be accessed along well-defined paths in a simple tree-like structure.

4.3 Component Oriented Programming 109

4.3 Component Oriented Programming

In the not-so-distant past, there has been a lot of buzz in the industry touting Component
Based Design (CBD). Much of it was more marketing than the actual application of new
design principles and it is also no surprise that the definition of a Software Component
differs between authors, companies and projects. A rather formal one is that of the Avalon

framework [17] of the Apache Jakarta project [253], which says:

Component Oriented Programming takes object-oriented programming one step
further. Regular object-oriented programming organizes data objects into enti-
ties that take care of themselves. There are many advantages to this approach.
... But it also has a big limitation: that of object Co-Dependency. To remove
that limitation, a more rigid idea had to be formalized: the Component. The
key difference between a regular object and a component is that a component

is completely replaceable (Black Box Reuse).

Many kinds of software components exist: There are Graphical User Interface (GUI) compo-
nents known from Delphi’s Visual Component Library (VCL) [63], from Visual Basic (VB)
[64] or Java’s Abstract Window Toolkit (AWT) [112], which calls its components Beans;
there are Business components containing domain knowledge and Technical components
interacting with infrastructure systems like CORBA-/ EJB-/ DCOM middleware, with a
Database (DB) or Operating System (OS) (sections 3.3, 3.9); there are general Application
components as investigated by Avalon [17]. Whole systems, that is self-acting components,

are often called Agents (section 4.3.7).

The following sections deal with application components whose principles are investigated
on the example of the Avalon framework, because that is an Open Source Software (OSS)
project providing all sources for free. After Avalon [17], Component Oriented Programming
(COP) were not necessarily the same as Component Based Design (CBD). The latter referred
to how a system is designed; the former to how it is implemented. In practice, one could

not implement COP without first designing with components in mind.

By following CBD rules, software projects try to integrate most diverse systems into one
environment. Although the systems should ideally use COP for the implementation of their
components, this is not a must. Legacy systems (section 3.10) can be encapsulated as well
[36], acting as one component to the outside environment. A Service offered by a legacy

system written in PL/1 [89], for example, may be designed and treated as component. It

110 4 Logical Architecture

may be accessed via Interface Definition Language (IDL) interfaces and use a Common
Object Request Broker Architecture (CORBA) for communication. The interna of such a
system, however, do neither have to follow component- nor object-oriented programming

principles.

The following sections describe popular COP techniques. Although being researched in
an own scientific field, Aspect Oriented Programming (AOP) principles are added as sub-
section, because Aspects are comparable to the Concerns of COP. For similar reasons, Agent
Oriented Programming (AGOP) techniques are described following, because Agents can be
seen as self-acting Components. All of them, that is COP’s concerns, AOP’s aspects and

AGOP’s agents owning a knowledge base will be recalled once again in part II of this work.

4.3.1 Inversion of Control

The Awalon documentation [17] defines a Component as a passive entity that performs a
specific role. According to this definition, a passive entity has to employ a passive Application
Programming Interface (API) which, after [17], were one that is acted upon, versus one that

acts itself.

As could be seen in section 4.2.4, it is often desirable to let a framework play the role of
the main program coordinating and sequencing events and application activity. Observers
(section 4.2.2) are applied to realise a callback mechanism; a Chain of Responsibility (section
4.2.2) is often set up among objects so that they can react to certain messages in a delegation
hierarchy. Both patterns rely on bidirectional dependencies whose negative effects such as

Strong Coupling were mentioned before (section 4.2.2).

The Inversion of Control (IoC) pattern [17], in a recent article of Martin Fowler also called
Dependency Injection [100], shows a way out. It is mentioned here (and was not in the
pattern section 4.2) because of its importance to COP. The pattern refers to a major semantic
detail: a parent object controlling child objects (components) through their passive API,
but not vice-versa, which results in solely unidirectional dependencies. As a side-effect, this
principle enforces Security by Design in that the flow of control (object access) is always
directed top-to-bottom. A parent instantiates its child components, hands over important
parameters (which were configured by the parent), and then calls the component’s methods.
Components are not autonomous. They have no state apart from the parent and also have
no way of obtaining a reference to implementations of parent parameters without the parent

giving them the implementation they need.

4.3 Component Oriented Programming 111

Parent objects that have the ability to host child objects are often called Container. A
container can provide a passive API itself which allows yet other containers to control that
container. A hierarchical container example can be found in the Pico Container project [56].
The container manages things like loading of configuration files, resolution of dependencies,

component handling and isolation, and lifecycle support.

4.3.2 Component Lifecycle

In a component environment, the container and the components living within it have con-
cluded a Contract which stipulates that the container is required to take its components

through what is called their Lifecycle.

startup

* constructor
* contextualise

° compose lifetime
* configure
g . suspend
* parameterise)
o recontextualise
* initialise
recompose
* start . .
reconfigure
shutdown reparameterise
* stop resume
* dispose
* finalise

Figure 4.37: Component Lifecycle Methods

The lifecycle of a component specifies the methods that can be called on it, and the order
in which this may happen. The corresponding methods are called Lifecycle Methods. Some
of them can be called only once in a specific phase of a component’s lifecycle, others may
be called multiple times. The methods in figure 4.37 are examples taken from the Avalon
[17] project. They represent three phases in a component’s lifecycle: Startup, Lifetime and

Shutdown.

Lifetime phase methods can be called repeatedly, at various times after startup and before

shutdown. The constructor is called as a consequence of instantiation. Its counterpart

112 4 Logical Architecture

destructor is not considered in the project; since Avalon is a Java-based framework, it was

omitted because a Garbage Collector destroys instances at some indeterminate moment.

The order in which the various lifecycle methods are called is very specific. While none
are required (it is possible to have a component implementing none of the lifecycle methods,
although the use of that would be limited), some can only be used when others are as well.
It is up to each container to indicate which lifecycle methods it will honour, as [17] writes.

This should be clearly documented together with the description of the container.

A component lifecycle allows to forward parameters throughout a whole framework, which
makes static objects such as the singleton managers criticised in section 4.2.3 superfluous.
The configure method, for example, may forward a Configuration object containing param-

eters that otherwise would have to be made global.

4.3.3 Interface and Implementation

The Separation of Interface and Implementation is a core concept of many programming
languages. Java, for example, distinguishes Interface and Class (section 4.1.15). Mark
Grand’s book Patterns in Java [113] refers to that separation simply as Interface pattern,

one of whose uses, after him, were to encapsulate components, that is to:
- Force decoupling of different components

- Ensure easy changes of interface implementations

- Enable users to read interface documentations without having the implementation

details clutter up their perception

- Increase the reuse possibility in larger applications

The Java source code example below shows how the sayHello method whose header is
declared in the HelloWorld interface can be used as Application Programming Interface
(API) without knowing anything about the underlying implementation. Depending on the
instance, the method may be processed on a local or a remote system.

package helloworld;

public interface HelloWorld {

void sayHello(String greeting);

package helloworld.impl.default;

4.3 Component Oriented Programming 113

public class DefaultHelloWorld implements HelloWorld {
void sayHello(String greeting) {

System.out.println("HelloWorld Greeting: " + greeting);

package helloworld.impl.remote;
public class RemoteHelloWorld implements HelloWorld {

: M .
private RemoteM ger remot ger;

public RemoteHelloWorld(RemoteMessager rm) {
remoteMessager = rm;

s

void sayHello(String greeting) {

rm.sendMessage ("HelloWorld Greeting: " + greeting);

Further details and recommendations for using interfaces, on examples specific to the Java

Development Kit (JDK) [112], are given in [17].

4.3.4 Separation of Concerns

The Avalon project [17] writes:

Separation of concerns in its simplest form is separating a problem into different
points of view. Every time one uses interfaces within object- or component
oriented programming, the Separation of Concerns (SoC) pattern is applied.
The interface separates the implementation concern from the concern of the

user of the interface.

Interfaces pool common methods (section 4.1.15). Inheriting an interface, components in-
dicate to their surrounding container which methods they implement so that the container
can use and rely on these. Therefore, one often talks of a Contract between container
and component. The contract defines what the container (as user of the component) must
provide and what the component produces. In the end, the separation of Interface and
Implementation (section 4.3.3) could be more correctly called separation of Contract and

Implementation.

The contract was mentioned in section 4.3.2 which explained that a container is responsible

for taking its components through a lifecycle. The Avalon project [17] specifies a number of

114 4 Logical Architecture

concerns which enforce the implementation of one or more lifecycle methods. Here is a list
of some concerns referring to the methods of section 4.3.2:

- Loggable

- Contextualizable

- Composable

- Configurable

- Initializable

- Startable

- Suspendable
For example, an object that can be configured implements the Configurable interface. The
contract surrounding that interface is that the container as instantiator of the object passes

a Configuration object to the component being a configurable object. Just what the config-

urable object does with the passed configuration object is irrelevant to the instantiator.

loggable K
health_record

insurance_record

e
7 eading

objective

Figure 4.38: Class Inheriting Loggable Concern Interface

Figure 4.38 shows an Electronic Health Record (EHR) component implementing the Loggable
interface which indicates that the component offers functionality for the logging of messages.

To fully explain the figure: The EHR inherits from a general Record class that references

4.3 Component Oriented Programming 115

so-called Heading objects which may be a Subjective description of a patient or an Objective
result of an examination. Of course, these objects may be programmed as components as

well.

A common comparison used in component oriented programming is that of the Role coming
from theater [17]. The function or action of a component’s role within a system, as well
as its contracts, are defined by its script — the interface. Any object that implements the
component interface must comply with the contracts. This allows developers to manipu-
late components using a standard interface, without worrying about the semantics of the

implementation. They are separate concerns.

A Service Manager is often used to get an instance of the needed component. The manager’s
lookup method identifies the component based on the Fully Qualified Name (FQN) of the
role (interface). If several components functioning in the same role exist, a Component

Selector may be applied to choose the right one. More details are given in [17].

4.3.5 Spread Functionality

<HL

health_record
S
<]—|: insurance_record
loggable J

objective

Figure 4.39: Redundant Code through Usage of Concerns

Separating concerns does not avoid Redundant Code. If two independent components want

to target the same concern what they expose by implementing the corresponding interface,

116 4 Logical Architecture

they will both have to implement the required methods redundantly. This may not be a
problem with just two records as in the example of figure 4.39, but will become an issue as

soon as other objects are to be programmed as component as well.

Another unwanted effect when using concern interfaces is the Overlapping of concerns (figure
4.40). It may happen that a superclass implements a number of lifecycle methods and their
corresponding interfaces without knowing if its subclasses eventually implement exactly one
of these, too. In such a case, redundant code would appear and the principle of efficient

programming would be injured once more.

‘Ioggable‘« ‘ loggable K—L
health_record

— record Jo| -
insurance_record

loggable <

subjective
__heading < oot
objective

Figure 4.40: Overlapping Code through Usage of Concerns

A piece of source code holding a reference to a component instance in form of a concern
interface can only call the methods of that concern. Mostly, however, other methods have to
be called as well. In this case, a Downcast from the concern interface to the component class
implementing the interface becomes necessary. Yet to be able to downcast, the class (type)
to downcast to needs to be known anyway. In the end, the usability of concern interfaces
turns out to be limited, sometimes even useless, since they only allow a few methods to be

called and information about the real class is not available.

From the viewpoint of reuse, it seems far better to inherit all components from one common
super-class, as suggested by the Layer Supertype pattern (section 4.2.1). This class would

implement necessary lifecycle methods just once, being available for all inheriting classes.

4.3 Component Oriented Programming 117

health_record

loggablet logga@i
—Reeord |

Ioggble <1I

4><]_|: SUbjeCtiVe

objective

insurance_record

Figure 4.41: Concerns Spread Functionality, an Ontology Bunches it

For the used example this would mean to eliminate all Loggable concern interfaces (figure

4.41) and put the logging functionality into the Record super class.

Finally, the only way out of the misery of redundant code caused by concern interfaces
seems to be Concern-less software development using pure class hierarchies. And in fact,
this is what Ontologies (section 4.6.7) are proposing. Section 4.3.4 mentioned that interfaces
help pooling common methods; but in the big system picture, they actually spread them.
While concerns represented by interfaces spread functionality, away from the classes that
were actually made to keep it, an ontology bunches functionality. Chapter 7 will show some
ontology examples and introduce a knowledge schema for their hierarchical representation,

including necessary meta information.

4.3.6 Aspect Oriented Programming

Another alternative avoiding redundant code caused by the implementation of concern in-
terfaces (section 4.3.4) is the so-called Aspect Oriented Programming (AOP), which is an
extension to Object Oriented Programming (OOP). Aspects are a possibility to separate and

define concern areas addressed in program code. Wikipedia [60] writes that:

Aspects emerged out of object-oriented programming and have functionality

118 4 Logical Architecture

similar to using a meta-object protocol (section 4.2.1). Aspects relate closely

to programming concepts like subjects, mixins, and delegation.

The Avalon documentation [17] means that AOP were: the next logical step after separation
of concerns. Many concerns could not be centrally addressed using the standard mechanisms

of programming. Using AOP, it were possible to do so in a simple fashion.

The AspectJ documentation [254] writes that the motivation for AOP had been the reali-
sation that there are issues or concerns (like a security policy) that cut across many of the
natural units of modularity of an application and are not well captured by traditional pro-
gramming methodologies. For Object Oriented Programming (OOP) languages, the natural
unit of modularity were the Class. But in these languages, some concerns were not easily
turned into classes because they’d cut across classes. So these weren’t reusable, couldn’t be
refined or inherited, were spread throughout the program in an undisciplined way and, in
short, were difficult to work with. AOP were a way of modularising Crosscutting Concerns
much like OOP were a way of modularising Common Concerns. The later chapter 6 will

come back to these two kinds of concerns in short.

As shown in the previous sections, the Awvalon project [17] uses concern interfaces (some-
times called Aspect Marker Interfaces) and Component Oriented Programming (COP) to
define its concerns, what frequently leads to redundant implementations. Other projects, for
instance AspectJ [254] and AspectWerkz [255], provide AOP facilities whose aim is the clean
modularisation of crosscutting concerns such as those in the following list, which AspectJ
divides into Development Aspects:

- Tracing

- Profiling and Logging

- Pre- and Post-Conditions

- Contract Enforcement

- Configuration Management
and Production Aspects:

- Change Monitoring
- Context Passing

- Providing Consistent Behaviour

4.3 Component Oriented Programming 119

The AspectJ project as an implementation of AOP for Java adds just one new concept
to that language — the Join Point, which is a well-defined point in the program flow. A
number of new constructs are introduced as well: A Pointcut picks out certain join points
and values at those points; an Advice is a piece of code that is executed when a join point
is reached. Both do dynamically affect the program flow. Inter-Type Declarations, on the
other hand, statically affect a program’s class hierarchy, namely the members of its classes
and the relationships between classes. AspectJ’s Aspect, finally, is the unit of modularity for
crosscutting concerns. It behaves somewhat like a Java class, summarising the constructs

described before, that is pointcuts, advices and inter-type declarations.

Aspect Oriented Software Development (AOSD) is about developing programs that rely
on AOP principles and languages — or language extensions, respectively. Such programs
get compiled slightly differently than usual. An Aspect Weaver generates a Join Point
Representation of the program, by merging code and aspects. Only afterwards, the program

is compiled into an executable.

Although AOP seems to successfully address the problem of crosscutting concerns, it also
brings with yet another programming paradigm that application developers have to get
familiar with. The new concepts and constructs further complicate software development.
The source code gets further fractured because of AOP’s additional modules. It is harder
to follow the program flow and one has less control on the behaviour of classes, so that the
usage of development tools becomes inevitable. But besides this rather general criticism,
there is more specific ones: The Join Point Model (JPM), for example, is reviewed in [145]
which points out some unsolved issues in AOP, while investigating the following properties

of join points:

- Granularity: only some locations in program code are suitable as join points

- Encapsulation: there is no effective way to protect join points from aspect-imposed

modification

- Semantics: low-level join point identification leads to tight coupling between aspects
and join points

- Jumping Aspects: context-sensitive join points execute different aspect code

- Sharing: dependencies and order of execution are unclear when having several pieces

of advice at the same join point

At least some of the concerns that AOP addresses could be implemented with lifecycle-

techniques as well. A logger, for example, could be created once at system startup. But

120 4 Logical Architecture

instead of accessing it across static methods, as suggested by the Singleton pattern (section
4.2.3), or executing an aspect-oriented Advice when a join point is reached, the reference
to the logger instance could simply be forwarded from component to component, using a
special globalise lifecycle method, so that each would be able to access the logger. However,
also this solution becomes tedious with a growing number of objects to be forwarded. The
new kind of programming introduced in part II of this work therefore suggests to put general
functionality (concerns, aspects) into an interpreter program acting close to hardware and

providing the general functionality to application systems executed by it.

4.3.7 Agent Oriented Programming

Components created after the principles of Component Oriented Programming (COP) are
passive, because they follow the Inversion of Control (IoC) pattern. The functionality,
or Service, they offer is called by a surrounding container, via a well-defined Application
Programming Interface (API). Active components, on the other hand, act alone. An Agent is
a self-acting component. It runs autonomically or semi-autonomically, is proactive, reactive
and social [294, p. 330]. Many individual communicative software agents may form a
Multi Agent System (MAS) [60]. Communication happens by some Agent Communication
Language (ACL) (section 4.5.3). David Parks, who calls Agent Oriented Programming
(AGOP) a Language Paradigm, writes [245]:

In AGOP, objects known as agents interact to achieve individual goals. Agents
can exist in a structure as complex as a global internet or one as simple as a
module of a common program. Agents can be autonomous entities, deciding
their next step without the interference of a user, or they can be controllable,

serving as a mediary between the user and another agent.

In search for a uniform definition of the term Agent, Ralf Kuehnel investigated numerous
sources of literature but finally comes to the conclusion [183, p. 203] that the term is just
a Metaphor standing for different properties, depending on the field it is used in. Typically
mentioned means of agents, however, are [183, p. 11]: Distribution, common Language and

Ontology (section 4.6), Cooperation and Coordination, Security and Mobility.

Comparing Agents of AGOP with Objects known from OOP, Parks [245] writes: It is not
clear, for example, what the concepts of inheritance and dynamic dispatch mean when dis-

cussing an agent. He points out the following significant differences:

4.3 Component Oriented Programming 121

- The fields of an agent are restricted. The state of an agent is described in terms of
Beliefs, Capabilities and Decisions (Obligation / Commitment). These ideas are built

into the syntax of the language.

- Each message is also defined in terms of mental activities. An agent may engage
another (or itself) with messaging activities from a restricted class of categories. In
Shoham’s formalism [287], the categories of messages are taken from Speech-Act The-
ory; they are: Informing, Requesting, Offering, Accepting, Rejecting, Competing and

Assisting.

Yoav Shoham, who presented AGOP as a new way to describe intelligent agents [287],
suggests that an AGOP system needs three elements to be complete, a:

- Formal Language with clear syntax for describing the mental state

- Programming Language in which to define agents

- Method for converting neutral applications into agents
To the Mental State of an agent belong information [183] about its:

- Environment (constraints)

- Ezpertise (capabilities) and Motivations (aims)

- Actions and Plans
Tim Finin et al. [87] classify the statements in a knowledge base into two categories: Beliefs
and Goals. After them, an agent’s beliefs encoded information it has about itself (capa-
bilities) and its external environment (constraints), including the knowledge bases of other

agents. An agent’s goals encoded states of its external environment that the agent would

act to achieve.

To a running Agent system belong the following modules [183]:

- Knowledge Base: mental state, as described above

- Controller: task controller, scheduler and option selection algorithm
- FEzecutor: task runner and security

- Interaction: communication handler, sender and receiver

- Management: lifecycle manager, startup and shutdown

122 4 Logical Architecture

While early research in AGOP used special languages like Shoham’s Agent0 [287], agent-
oriented systems created later were also built upon OOP- and other contemporary pro-
gramming paradigms [183, p. 237]. Ralf Kuehnel [183] calls Agent0 alone a very limited
programming language and takes this as evidence for supporting both, the development of
agents and the representation of knowledge with a framework based on OOP principles.
For the implementation of this framework, his choice fell on Java as system programming

language (section 4.1.7).

That is, although AGOP suggests the separation of a system’s Knowledge (mental state)
from its internal runtime processing and Control (agent) and sees them both as separate
elements that should be implemented in different languages (formal vs. programming), as
mentioned by Shoham (see above), many agent-oriented systems use just one language for
implementing both. Even if they are kept in different modules, the conceptual differences
between high-level application knowledge and low-level system control cannot be honoured
sufficiently. This Miz-up puts them on the same level like traditional systems. Cybernetics
Oriented Programming (CYBOP) as described in this work therefore defines a knowledge
modelling language (chapter 9) which is independent from the implementation language of

its underlying interpreter.

Furthermore, if OO concepts like Composition or Inheritance were present in knowledge
models, the usage of an OOP language to implement the actual agent system could not
be justified any longer. In such a case, lower-level Structured and Procedural Programming
(SPP) languages would suffice, and work much more efficiently. Chapter 10 of this work
introduces a knowledge interpreter that is written in the C' programming language. The
interpreter owns a knowledge base keeping all application knowledge, and it has modules for
lifecycle management, signal (event) processing, communication etc., just like the definition

of an agent (see above) suggests.

4.4 Domain Engineering

Undoubtedly, Object Oriented Programming (OOP) (section 4.1.15) is one of the most pop-
ular programming paradigms in use today. Its application within a Software Engineering
Process (SEP) (chapter 2) requires two preliminary phases called Object Oriented Analysis
(OOA) and Object Oriented Design (OOD).

The area of System Family Engineering applies a so-called Siz-Pack approach (figure 4.42)

4.4 Domain Engineering 123

Figure 4.42: Six Pack Model of System Family Development [44, 79]

which is based on the separation of Domain Engineering (DE) and Application Engineering
(AE). The focus of AE is a single system whereas the focus of DE is on multiple related
systems within a domain, as [44] defines. Both of them consist of analysis-, design- and
implementation phases. The results of each DE phase are fed in as foundation for the work
to be done in AE. Most of the topics described in the previous sections (4.1, 4.2 and 4.3)
turned around techniques which are applicable to both, DE as well as AE.

In Krzysztof Czarnecki’s opinion [66], the only SEPs adequately addressing the issue of
Development for Reuse were DE methodologies, most of which had essentially the same

structure. He writes:

Domain Engineering is the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a particular domain in the
form of reusable assets (i.e. reusable work-products), as well as providing an
adequate means for reusing these assets (i.e. retrieval, qualification, dissemina-

tion, adaptation, assembly, etc.) when building new systems.

After him, the main difference between traditional OOA/ OOD- and DE methods were that
the former focus on developing Single systems, the latter though on developing Families of
systems. Combined with the definition stated above ([44]), this means that OOA/ OOD

methods may be used for application-, but not domain engineering. Different methods and

124 4 Logical Architecture

techniques exist for DE. Many are given in [338, 10, 84]. Just a few of them shall be

mentioned here:

e Feature Oriented Domain Analysis (FODA)
e Reuse driven Software Engineering Business (RSEB)

e Feature RSEB (FeatuRSEB)

The RSEB methodology [164] places emphasis on purely Object Oriented (OO) techniques
which it uses together with the Unified Modelling Language (UML). Features and Feature
Models (section 4.4.4), as concept, were introduced by the FODA [46]. The combination of
RSEB and FODA results in the FeatuRSEB approach [115]. It permits a separate treatment

of domain knowledge and system functionality.

However, this work is less interested in the details of DE software development Methods, but
rather in their Knowledge Abstraction- and Implementation techniques. Some of them are

investigated in the following sections.

4.4.1 Tool & Material

In software engineering, the term Domain stands for a special field of business in which
software systems are applied. Frequently, system development methods distinguish between
data belonging to the Domain and functionality defining the actual Application working on

the domain. The system family engineering mentioned before is one example.

This view is comparable to the well-known Tools & Materials approach [351] which is based
on the distinction of active applications (tools) working on passive domain data (material).
Materials can never be accessed directly, but only by using appropriate tools, as [351] writes.
This simple idea is an important pre-condition for the separate treatment of System and

Knowledge, as explained in chapter 6 of this work.

4.4.2 Generics

Generic Programming received its name from the Generics it uses. Wikipedia [60] writes:
Generics is a technique that allows one value to take different datatypes (so-called polymor-

phism) as long as certain contracts such as subtypes and signature are kept. Templates are

4.4 Domain Engineering 125

one technique providing generics. They allow the writing of code without considering the

data type that code will eventually be used with. Two kinds of templates exist [60]:

- Function Template: behaving like a function that can accept arguments of many

different types

- Class Template: extending the same concept to classes; often used to make generic

containers

Using templates of the C++ Standard Template Library (STL) [153], a list may be declared
by writing 1ist<T>, where T represents the type that may be substituted as needed. A
linked list of integers, for example, would be created with 1list<int>. After [60], there are

three primary drawbacks to the use of templates:

1. Less portable code due to the poor support for templates in compilers

2. Difficult development of templates due to unhelpful error messages produced by com-

pilers

3. Bloated code due to the extra code (instantiated template) generated by compilers

Meanwhile, many other OOP languages like Eiffel, Java, VB.NET and C# provide generic
facilities. Being used to improve the customisability of code at compile time, they retain the
efficiency of statically configured code. However, in practice (own experience of the author) it
is often hard for programmers to understand and handle generic techniques. Czarnecki [66],
who summarises generic programming as Reuse through Parameterisation, criticises that
it: limits code generation to substituting generic type parameters with concrete types and
welding together pre-ezisting fragments of code in a fized pattern. Dynamic Typing (section
4.1.8) is one possibility to circumvent the need for gen