org.apache.spark.ml.classification
DecisionTreeClassifier 
            Companion object DecisionTreeClassifier
          
      class DecisionTreeClassifier extends ProbabilisticClassifier[Vector, DecisionTreeClassifier, DecisionTreeClassificationModel] with DecisionTreeClassifierParams with DefaultParamsWritable
Decision tree learning algorithm (http://en.wikipedia.org/wiki/Decision_tree_learning) for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
- Annotations
- @Since( "1.4.0" )
- Source
- DecisionTreeClassifier.scala
- Grouped
- Alphabetic
- By Inheritance
- DecisionTreeClassifier
- DefaultParamsWritable
- MLWritable
- DecisionTreeClassifierParams
- TreeClassifierParams
- DecisionTreeParams
- HasWeightCol
- HasSeed
- HasCheckpointInterval
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      An alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        cacheNodeIds: BooleanParam
      
      
      If false, the algorithm will pass trees to executors to match instances with nodes. If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        checkpointInterval: IntParam
      
      
      Param for set checkpoint interval (>= 1) or disable checkpoint (-1). Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext. - Definition Classes
- HasCheckpointInterval
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): DecisionTreeClassifier.this.type
      
      
      Clears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): DecisionTreeClassifier
      
      
      Creates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- DecisionTreeClassifier → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since( "1.4.1" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      Copies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      Default implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      Explains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      Explains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        featuresCol: Param[String]
      
      
      Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_]): DecisionTreeClassificationModel
      
      
      Fits a model to the input data. 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[DecisionTreeClassificationModel]
      
      
      Fits multiple models to the input data with multiple sets of parameters. Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training. - dataset
- input dataset 
- paramMaps
- An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted models, matching the input parameter maps 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): DecisionTreeClassificationModel
      
      
      Fits a single model to the input data with provided parameter map. Fits a single model to the input data with provided parameter map. - dataset
- input dataset 
- paramMap
- Parameter map. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DecisionTreeClassificationModel
      
      
      Fits a single model to the input data with optional parameters. Fits a single model to the input data with optional parameters. - dataset
- input dataset 
- firstParamPair
- the first param pair, overrides embedded params 
- otherParamPairs
- other param pairs. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCacheNodeIds: Boolean
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCheckpointInterval: Int
      
      
      - Definition Classes
- HasCheckpointInterval
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeaturesCol: String
      
      
      - Definition Classes
- HasFeaturesCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getImpurity: String
      
      
      - Definition Classes
- TreeClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLabelCol: String
      
      
      - Definition Classes
- HasLabelCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLeafCol: String
      
      
      - Definition Classes
- DecisionTreeParams
- Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxBins: Int
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxDepth: Int
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxMemoryInMB: Int
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInfoGain: Double
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInstancesPerNode: Int
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinWeightFractionPerNode: Double
      
      
      - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
      
      
      Get the number of classes. Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value. Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in extractLabeledPoints().- dataset
- Dataset which contains a column labelCol 
- maxNumClasses
- Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored. 
- returns
- number of classes 
 - Attributes
- protected
- Definition Classes
- Classifier
- Exceptions thrown
- IllegalArgumentExceptionif metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      Gets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      - Definition Classes
- HasPredictionCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getProbabilityCol: String
      
      
      - Definition Classes
- HasProbabilityCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getRawPredictionCol: String
      
      
      - Definition Classes
- HasRawPredictionCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSeed: Long
      
      
      - Definition Classes
- HasSeed
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getThresholds: Array[Double]
      
      
      - Definition Classes
- HasThresholds
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getWeightCol: String
      
      
      - Definition Classes
- HasWeightCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      Tests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      Tests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        impurity: Param[String]
      
      
      Criterion used for information gain calculation (case-insensitive). Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeClassifier and RandomForestClassifier, Supported: "entropy" and "gini". (default = gini) - Definition Classes
- TreeClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        labelCol: Param[String]
      
      
      Param for label column name. Param for label column name. - Definition Classes
- HasLabelCol
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        leafCol: Param[String]
      
      
      Leaf indices column name. Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "") - Definition Classes
- DecisionTreeParams
- Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxBins: IntParam
      
      
      Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxDepth: IntParam
      
      
      Maximum depth of the tree (nonnegative). Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxMemoryInMB: IntParam
      
      
      Maximum memory in MB allocated to histogram aggregation. Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInfoGain: DoubleParam
      
      
      Minimum information gain for a split to be considered at a tree node. Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInstancesPerNode: IntParam
      
      
      Minimum number of instances each child must have after split. Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        minWeightFractionPerNode: DoubleParam
      
      
      Minimum fraction of the weighted sample count that each child must have after split. Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0) - Definition Classes
- DecisionTreeParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        probabilityCol: Param[String]
      
      
      Param for Column name for predicted class conditional probabilities. Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities. - Definition Classes
- HasProbabilityCol
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        rawPredictionCol: Param[String]
      
      
      Param for raw prediction (a.k.a. Param for raw prediction (a.k.a. confidence) column name. - Definition Classes
- HasRawPredictionCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      Saves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        seed: LongParam
      
      
      Param for random seed. Param for random seed. - Definition Classes
- HasSeed
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): DecisionTreeClassifier.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): DecisionTreeClassifier.this.type
      
      
      Sets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): DecisionTreeClassifier.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setCacheNodeIds(value: Boolean): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setCheckpointInterval(value: Int): DecisionTreeClassifier.this.type
      
      
      Specifies how often to checkpoint the cached node IDs. Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10) - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): DecisionTreeClassifier.this.type
      
      
      Sets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): DecisionTreeClassifier.this.type
      
      
      Sets a default value for a param. 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setFeaturesCol(value: String): DecisionTreeClassifier
      
      
      - Definition Classes
- Predictor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setImpurity(value: String): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLabelCol(value: String): DecisionTreeClassifier
      
      
      - Definition Classes
- Predictor
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setLeafCol(value: String): DecisionTreeClassifier.this.type
      
      
      - Definition Classes
- DecisionTreeParams
- Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxBins(value: Int): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxDepth(value: Int): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxMemoryInMB(value: Int): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMinInfoGain(value: Double): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMinInstancesPerNode(value: Int): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMinWeightFractionPerNode(value: Double): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): DecisionTreeClassifier
      
      
      - Definition Classes
- Predictor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setProbabilityCol(value: String): DecisionTreeClassifier
      
      
      - Definition Classes
- ProbabilisticClassifier
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setRawPredictionCol(value: String): DecisionTreeClassifier
      
      
      - Definition Classes
- Classifier
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setSeed(value: Long): DecisionTreeClassifier.this.type
      
      
      - Annotations
- @Since( "1.6.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setThresholds(value: Array[Double]): DecisionTreeClassifier
      
      
      - Definition Classes
- ProbabilisticClassifier
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setWeightCol(value: String): DecisionTreeClassifier.this.type
      
      
      Sets the value of param weightCol. Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one. - Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        thresholds: DoubleArrayParam
      
      
      Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold. - Definition Classes
- HasThresholds
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        train(dataset: Dataset[_]): DecisionTreeClassificationModel
      
      
      Train a model using the given dataset and parameters. Train a model using the given dataset and parameters. Developers can implement this instead of fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
- Training dataset 
- returns
- Fitted model 
 - Attributes
- protected
- Definition Classes
- DecisionTreeClassifier → Predictor
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      Check transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- Predictor → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      :: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      An immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- DecisionTreeClassifier → Identifiable
- Annotations
- @Since( "1.4.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
      
      
      Validates and transforms the input schema with the provided param map. Validates and transforms the input schema with the provided param map. - schema
- input schema 
- fitting
- whether this is in fitting 
- featuresDataType
- SQL DataType for FeaturesType. E.g., - VectorUDTfor vector features.
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- DecisionTreeClassifierParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        weightCol: Param[String]
      
      
      Param for weight column name. Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0. - Definition Classes
- HasWeightCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      Returns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from DecisionTreeClassifierParams
Inherited from TreeClassifierParams
Inherited from DecisionTreeParams
Inherited from HasWeightCol
Inherited from HasSeed
Inherited from HasCheckpointInterval
Inherited from ProbabilisticClassifier[Vector, DecisionTreeClassifier, DecisionTreeClassificationModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from Classifier[Vector, DecisionTreeClassifier, DecisionTreeClassificationModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from Predictor[Vector, DecisionTreeClassifier, DecisionTreeClassificationModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[DecisionTreeClassificationModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.